scholarly journals Relating soil specific surface area, water film thickness, and water vapor adsorption

2014 ◽  
Vol 50 (10) ◽  
pp. 7873-7885 ◽  
Author(s):  
Tairone Paiva Leão ◽  
Markus Tuller
2013 ◽  
Vol 438-439 ◽  
pp. 67-71
Author(s):  
Qian Qian Zhang ◽  
Jian Zhong Liu ◽  
Jia Ping Liu

The effects of ground slag with different specific surface area on the rheology of mortar at water-binder ratio of 0.25, 0.28 and 0.30 were investigated, and the combined effects of packing density and solid surface area on the rheology of mortar were evaluated in terms of the water film thickness. The results show that with the increasing of specific surface area of slag (220 m2/kg-784 m2/kg), plastic viscosity and yield stress decrease. The correlations of yield stress and plastic viscosity to the water film thickness are basically linear with high correlation R2 values. The action of the ground slag on the rheology of mortar can be characterized by water film thickness, and with the increasing of water film thickness the rheological parameters decrease.


1987 ◽  
Vol 59 (2) ◽  
pp. 67-72
Author(s):  
Raina Niskanen ◽  
Väinö Mäntylahti

The specific surface area of 60 mineral soil samples estimated by water vapor adsorption at 20 % relative humidity ranged from 12.1 ± 3.6 to 225.1 ±18.4 m2/g. Clay (range 1—72 %) and organic carbon content (0.7—14.6 %) together explained 84 % of the variation in the surface area. The regression equation predicting the specific surface area of soil was surface area (m2/g) =2.69+ 1.23clay-% +8.69org.C-%.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Young Jung ◽  
Hye-Ryeon Yu ◽  
Se Jin In ◽  
Young Chul Choi ◽  
Young-Seak Lee

The surfaces of carbon molecular sieves (CMSs) were thermally fluorinated to adsorb water vapor. The fluorination of the CMSs was performed at various temperatures (100, 200, 300, and 400°C) to investigate the effects of the fluorine gas (F2) content on the surface properties. Fluorine-related functional groups formed were effectively generated on the surface of the CMSs via thermal fluorination process, and the total pore volume and specific surface area of the pores in the CMSs increased during the thermal fluorination process, especially those with diameters ≤ 8 Å. The water vapor adsorption capacity of the thermally fluorinated CMSs increased compared with the as-received CMSs, which is attributable to the increased specific surface area and to the semicovalent bonds of the C–F groups.


2020 ◽  
Vol 38 (1-2) ◽  
pp. 60-76 ◽  
Author(s):  
Hong Zhao ◽  
Qiongfen Yu ◽  
Ming Li ◽  
Shengnan Sun

In this study, activated carbons without any chemical residue were prepared from walnut shells. The preparation method in a tube furnace included a pyrolysis carbonization process and a CO2 activation process. The influences of activation temperature and holding time on the specific surface area, yield, and pore structure were investigated. Adsorption performance of water vapor was also examined in details. Thermogravimetric analysis, N2 adsorption–desorption isotherm, and scanning electron microscope were used to characterize samples. The result shows that the activation energy at different heating rates varies from 30.16 to 64.86 kJ/mol. The highest water vapor adsorption capacity of the sample is 0.3824 g/g and it takes only 30 min to realize regeneration. And the maximum Brunauer–Emmett–Teller specific surface area of 1228 m2/g also occurs in this optimal preparation condition. CO2 physical activation method was found to have a positive effect on pore structure development of activated carbon for water vapor adsorption.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiang Lin ◽  
Qinhong Hu ◽  
Zhihua Chen ◽  
Qiming Wang ◽  
Tao Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3811
Author(s):  
Zhongbao Liu ◽  
Jiayang Gao ◽  
Xin Qi ◽  
Zhi Zhao ◽  
Han Sun

In this study, the hydrothermal method was used to synthesize MIL-101(Cr), and activated carbon (AC) with different content was incorporated in to MIL-101(Cr), thereby obtaining AC-MIL-101(Cr) composite material with a huge specific surface area. The physical properties of MIL-101(Cr) and AC-MIL-101(Cr) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), nitrogen adsorption and desorption and specific surface area testing, and ethanol vapor adsorption performance testing. The results show that with the increase of activated carbon content, the thermal stability of AC-MIL-101(Cr) is improved. Compared with the pure sample, the BET specific surface area and pore volume of AC-MIL-101(Cr) have increased; In the relative pressure range of 0–0.4, the saturated adsorption capacity of AC-MIL-101(Cr) to ethanol vapor decreases slightly. It is lower than MIL-101(Cr), but its adsorption rate is improved. Therefore, AC-MIL-101(Cr)/ethanol vapor has a good application prospect in adsorption refrigeration systems. The exploration of AC-MIL-101(Cr) composite materials in this paper provides a reference for the future application of carbon-based/MOFS composite adsorbent/ethanol vapor working fluid in adsorption refrigeration.


Sign in / Sign up

Export Citation Format

Share Document