Characteristics of Hydrogen Sorption, Solubility and Diffusivity in Graphites and Carbon Nanomaterials: Relevance to the On-Board Storage Problem

2006 ◽  
Vol 249 ◽  
pp. 143-146 ◽  
Author(s):  
Yuriy S. Nechaev ◽  
G.A. Filippov

Results of experimental and theoretical investigations on hydrogen sorption by various carbon nanostructures, including fullerenes, single-walled and multi-walled nanotubes, nanofibers and nanographite-based composites are surveyed. Results of a thermodynamic analysis of the most significant experimental data are presented. The emphasis is placed on the studies reporting the extremum sorption parameters. The thermodynamic and kinetic (diffusion) parameters and equations describing the sorption processes are refined. The prospects of the applications of novel carbon nanomaterials for hydrogen storage in automotive industry are discussed.

2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.


2021 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Moon Sung Kang ◽  
Jong Ho Lee ◽  
Suck Won Hong ◽  
Jong Hun Lee ◽  
Dong-Wook Han

Over the past few decades, carbon nanomaterials, including carbon nanofibers, nanocrystalline diamonds, fullerenes, carbon nanotubes, carbon nanodots, and graphene and its derivatives, have gained the attention of bioengineers and medical researchers as they possess extraordinary physicochemical, mechanical, thermal, and electrical properties. Recently, surface functionalization with carbon nanomaterials in dental and orthopedic implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for osseointegration. Numerous developments in fabrication and biological studies of carbon nanostructures have provided various novel opportunities to expand their application to hard tissue regeneration and restoration. In this minireview, the recent research trends in surface functionalization of orthopedic and dental implants with coating carbon nanomaterials are summarized. In addition, some seminal methodologies for physicomechanical and electrochemical coatings are discussed. In conclusion, it is shown that further development of surface functionalization with carbon nanomaterials may provide innovative results with clinical potential for improved osseointegration after implantation.


2014 ◽  
Vol 1040 ◽  
pp. 92-96
Author(s):  
Denis A. Tatarnikov ◽  
Aleksey V. Godovykh

This paper is devoted to the study of stable structures of various carbon nanomaterials using molecular dynamic simulation, study of their properties and characteristics, as well as search for possible later use in nanoelectronics and nanomechanics. We develop programs for computation of the system of atoms at every step and visualization of that data, also we research of thermodynamic properties and conditions of formation of different carbon nanostructures, try to predict existence of new materials. Nowadays we have two separate programs: one for computation and one for visualization. We continue to collect statistical data, investigate behavior of the system under different conditions.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012096
Author(s):  
Naseer T. Alwan ◽  
S E Shcheklein ◽  
O M Ali

Abstract Solar distillation is an important technology to get potable water from saltwater using clean and free solar energy. In the current study, an experimental and theoretical investigation of a single-slope traditional solar still was carried out, and the freshwater productivity and thermal efficiency were evaluated for four typical days (19/06, 17/07, 22/08, and 15/09) of 2019 by implementing temperature parameters in different points of the solar still, and the weather parameters such as solar radiation, and ambient air temperature. The study showed an acceptable agreement between the experimental and theoretical results with an average of 6.6% measured deviation of the experimental data. It was noticed that the highest values of productivity were recorded on July 17, 2019.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Protima Rauwel ◽  
Martin Salumaa ◽  
Andres Aasna ◽  
Augustinas Galeckas ◽  
Erwan Rauwel

Photoluminescent ZnO carbon nanomaterials are an emerging class of nanomaterials with unique optical properties. They each, ZnO and carbon nanomaterials, have an advantage of being nontoxic and environmentally friendly. Their cost-effective production methods along with simple synthesis routes are also of interest. Moreover, ZnO presents photoluminescence emission in the UV and visible region depending on the synthesis routes, shape, size, deep level, and surface defects. When combined with carbon nanomaterials, modification of surface defects in ZnO allows tuning of these photoluminescence properties to produce, for example, white light. Moreover, efficient energy transfer from the ZnO to carbon nanostructures makes them suitable candidates not only in energy harvesting applications but also in biosensors, photodetectors, and low temperature thermal imaging. This work reviews the synthesis and photoluminescence properties of 3 carbon allotropes: carbon quantum or nanodots, graphene, and carbon nanotubes when hybridized with ZnO nanostructures. Various synthesis routes for the hybrid materials with different morphologies of ZnO are presented. Moreover, differences in photoluminescence emission when combining ZnO with each of the three different allotropes are analysed.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 471-475
Author(s):  
Shao-Yi Wu ◽  
Hui-Ning Dong

In this work, the spin Hamiltonian (SH) parameters g|| and g⊥, and the hyperfine structure constants A|| and A⊥ for ZrSiO4:Np4+ are investigated on the basis of the perturbation formulas of these parameters for a 5f3 ion in tetragonal (D2d) symmetry. In these formulas, the contributions to the SH parameters from the second-order perturbation terms, the admixtures of various energy levels and the covalency effect are taken into account. The related crystal-field parameters are calculated from the superposition model and the local structural data of the Zr4+ site occupied by the impurity Np4+. The calculated SH parameters agree reasonably with the experimental data. The validity of the theoretical results is discussed.


Sign in / Sign up

Export Citation Format

Share Document