Investigations on Tensile Properties of Waste Fillers Reinforced Composites

2012 ◽  
Vol 326-328 ◽  
pp. 354-359
Author(s):  
Mehmet Safa Bodur ◽  
Turgut Gülmez ◽  
Ayhan Durademir

In this study, low density polyethylene (LDPE) matrix composites were manufactured with the ratios of 20%, 30% and 40%wt hazelnut and peanut reinforcements as the natural fibers. Composite plates were manufactured by using a single screw extruder. Various tests and measurements are performed to obtain mechanical properties such as density, tensile strength (TS), Youngs modulus (YM), failure strain (FS), impact strength (IS) etc. as well as the effect of maleic anhydride grafted resin as an additive with different ratios was investigated and the optimum composite content was obtained. This preliminary work showed that hazelnut and peanut fillers could be utilized with proper additives in order to produce the composite materials with good physical and mechanical properties.

2021 ◽  
Vol 31 (2) ◽  
pp. 81-92
Author(s):  
Lalit Ranakoti ◽  
Pawan Kumar Rakesh ◽  
Brijesh Gangil

Green and sustainable material is the utmost prerequisite for the advancement of a healthy society and fulfilling the necessary for the improvement in material science. Naturally obtaining wood flour has the competence to be reinforced as a filler substance in the polymer composite. The present article deals with the usage of wood flour as a filler in the polymer composite. The article comprises properties, characteristics, occurrence, the structure of wood, and the techniques implemented in the manufacturing of wood flour polymer composites. In addition, critical parameters and causes that can bring changes in the properties like tensile, flexural, impact and hardness of polymers are also discussed with the addition of wood flour alone and with nanoparticles. The advantages of using wood flour as a filler in the thermoset and thermoplastic polymers discussed, and its hybridization with various natural fibers was also discussed in the present study.


2019 ◽  
Vol 969 ◽  
pp. 122-127
Author(s):  
B.N. Anjan ◽  
G.V. Preetham Kumar

Zinc aluminum based matrix composites reinforced with SiC and Al2O3 particles have significant applications in the automobile field. Stir casting method followed by squeeze process was used for fabrication. ZA27 composites reinforced with SiC and Al2O3 particles (20-50µm) in various weight percentage (wt%) ranges from 0-10 in a step of 5 each was fabricated. OM, SEM and EDS analysis of microstructures obtained for matrix alloy and reinforced composites were performed in order to know the effect of varying wt% on physical and mechanical properties of composites. Squeeze casting technique shows better features such as fine microstructure as a result of low porosity and good bonding between matrix and reinforcement. Addition of reinforcements decreased the densities of matrix alloy. SiC reinforced composites showed better results as compared with Al2O3 reinforced ones. Hardness and ultimate tensile strength value of 10 wt% reinforced composites showed improved results.


2011 ◽  
Vol 471-472 ◽  
pp. 151-156 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Ahmad Haji Sahrim

We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites. Recycled high density polyethylene (rHDPE) and natural fibers were compounded into pellets by compounder, then the pellets were extruded using co-rotating twin-screw extruder and test specimens were prepared by hot and cold press process. From the study, samples with 0.5 wt% of antioxidants produce the highest strength and elasticity of composites. The effect of antioxidants presence on water uptake is minimal.


2018 ◽  
Vol 38 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Rashid Latif ◽  
Saif Wakeel ◽  
Noor Zaman Khan ◽  
Arshad Noor Siddiquee ◽  
Shyam Lal Verma ◽  
...  

The need of natural fiber-reinforced composites is increasing at very fast rate because of their ecofriendly production, decomposition, high specific strength, abundance, good physical and mechanical properties. Available literature reveals that past researchers have done a lot of work for the preparation and characterization of fiber-reinforced composites. While developing natural fiber composites, researchers encountered various problems like hydrophilic nature of natural fibers, incompatibility of natural fibers with matrix materials, thermal instability of natural fibers, and poor interfacial bonding between reinforcing phase and matrix phase. However, some of these problems can be solved to a greater extent by considering surface treatment of natural fibers before they are used in the preparation of fiber-reinforced composites. Thus, there is a need for understanding the effect of several surface treatments on the mechanical properties of fiber-reinforced composites. The aim of this paper is to put forth a comprehensive review on the effects of different surface treatments on the mechanical properties such as tensile strength, flexural strength, and impact strength and also interfacial shear strength of the fiber-reinforced composites.


2018 ◽  
Vol 783 ◽  
pp. 28-33
Author(s):  
He Zhi He ◽  
Shi Ming Liu ◽  
Lan Ya Cheng ◽  
Yi Ping Ni ◽  
Feng Xue ◽  
...  

Metallocene linear low-density polyethylene (m-LLDPE) has superior physical and mechanical properties. While, the film blowing processability of m-LLDPE was very poor when processed under shear flow. To overcome this drawback, a novel device based on elongational flow was self-developed to process m-LLDPE. In order to investigate the effect of elongational flow on the processability improvement of m-LLDPE, five types PE were studied in this paper. All kinds of PE were prepared using this novel device and traditional single-screw extruder with molecular weight and its distribution, mechanical properties and WAXD characterization. Gel Pemeation Chromotographer (GPC) data shows that molecular weight of each resin prepared using this novel eccentric rotor extruder (ERE) is higher than that processed by traditional single screw extruder (SSE). Mechanical properties showed that tensile properties of all kinds of films blowing from ERE is better than the one from SSE. However, tear properties of m-LLDPE films made from ERE differ from LDPE or LLDPE. And had a relative low value than the one made from SSE. In addition, Wide-angle X-ray Diffraction (WAXD) results indicate that films blowing from ERE exist a partially ordered component in addition to the usual crystalline and amorphous components which can’t be achieved from SSE.


2011 ◽  
Vol 28 (2) ◽  
pp. 115
Author(s):  
S.M Sadaf ◽  
M Siddik ◽  
Q Ahsan

Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90)° composites showed reduced strength compared to (0–90)° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90)° jute mat oriented composites showed twisted fibres, while (0 ± 45–90)° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90)° showed better properties compared to other fabricated composites.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 846-849
Author(s):  
Elżbieta Bączek

Metal matrix composites were prepared by hot pressing (HP) and spark plasma sintering (SPS) techniques. Ball-milled ironbase powders were consolidated to near full density by these methods at 900°C. The physical and mechanical properties of the resulting composites were investigated. The specimens were tested for resistance to both 3-body and 2-body abrasion. The composites obtained by HP method (at 900°C/35 MPa) had higher density, hardness and resistance to abrasion than those obtained by SPS method.


Heliyon ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. e04157 ◽  
Author(s):  
O.P. Balogun ◽  
J.A. Omotoyinbo ◽  
K.K. Alaneme ◽  
A.A. Adediran

2019 ◽  
Vol 23 ◽  
pp. 6-30
Author(s):  
Volkan Uğraşkan ◽  
Abdullah Toraman ◽  
A. Binnaz Hazar Yoruç

In early composite materials, the use of petroleum based fibers such as glass and carbon fibers, aramid etc. was common. In order to reduce the dependency on petroleum based sources and environmental pollution, researchers have focused on the search for alternative sources. Natural fibers are abundant, recyclable and biodegradable plant derived materials. Besides, thanks to good physical, thermal and mechanical properties, natural fibers become promising alternative for composites. This review includes information about natural fiber reinforced composites’ components, manufacturing methods, mechanical properties and applications.


Sign in / Sign up

Export Citation Format

Share Document