Heterogeneous and Homogeneous Reaction Analysis on MHD Oldroyd-B Fluid with Cattaneo-Christov Heat Flux Model and Convective Heating

2018 ◽  
Vol 387 ◽  
pp. 194-206 ◽  
Author(s):  
Sheniyappan Eswaramoorthi ◽  
Marimuthu Bhuvaneswari ◽  
S. Sivasankaran ◽  
Oluwole Daniel Makinde

The impact of Cattaneo-Christov heat flux model for the MHD flow of an Oldroyd-B fluid on a stretching plate with convective heating and heterogeneous-homogeneous chemical reactions were analyzed. The governing PDE’s are converted into a nonlinear ODE’s with appropriate similarity variables and it is solved using homotopy analysis method (HAM). The graphical results of velocity, temperature and concentration profiles are presented(detailed). We found that the fluid velocity reduces with enhancing the injection/suction parameter. In addition, the fluid temperature boosted up when rising the Biot number and the solutal boundary layer thickness reduces both heterogeneous and homogeneous chemical reaction parameters.

Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 395 ◽  
Author(s):  
Liaqat Ali ◽  
Xiaomin Liu ◽  
Bagh Ali

In this mathematical study, magnetohydrodynamic, time-independent nanofluid flow over a stretching sheet by using the Cattaneo–Christov heat flux model is inspected. The impact of the thermal, solutal boundary and gravitational body forces with the effect of double stratification on the mass flow and heat transfer phenomena is also observed. The temperature-dependent viscosity impact on heat transfer through a moving sheet with capricious heat generation in nanofluids have studied, and the viscosity of the fluid is presumed to deviate as the inverse function of temperature. With the appropriate transformations, the system of partial differential equations is transformed into a system of nonlinear ordinary differential equations. By applying the variational finite element method, the transformed system of equations is solved. The properties of the several parameters for buoyancy, velocity, temperature, stratification, and Brownian motion parameters have examined. The enhancement in the concentration and thermal boundary layer thickness of the nanofluid sheet due to the increment in the viscosity parameter, also increased the temperature and concentration of nanoparticles. Moreover, the fluid temperature declined with the increasing values of thermal relaxation parameter. This displays that the Cattaneo–Christov heat flux model provides a better assessment of temperature distribution. Moreover, confirmation of the code and precision of the numerical method has inveterate with the valuation of the presented results with previous studies.


2018 ◽  
Vol 48 (2) ◽  
pp. 72-92 ◽  
Author(s):  
R.V.M.S.S. Kiran Kumar ◽  
S.V.K. Varma

Abstract The hydromagnetic nanofluid flow over a stretching sheet in a porous medium with variable wall thickness in the presence of Brownian motion and thermophoresis is investigated. The heat transfer characteristics with variable conductivity are explored by using Cattaneo-Christov heat flux model. The governing non-linear ordinary differential equations are solved by using boundary value problem default solver in MATLAB bvp4c package. The impact of various important flow parameters on velocity, temperature and nanoparticle concentration as well as the friction factor coefficient and the rate of heat and mass transfer coefficients are presented and discussed through graphs and tables. It is found that the fluid velocity is accelerated with an increase in wall thickness parameter for n > 1, while the reverse trend is observed for n < 1.


Author(s):  
Bhuvnesh Sharma ◽  
Sunil Kumar ◽  
Carlo Cattani ◽  
Dumitru Baleanu

Abstract A rigorous analysis of coupled nonlinear equations for third-grade viscoelastic power-law non-Newtonian fluid is presented. Initially, the governing partial differential equations for conservation of energy and momentum are transformed to nonlinear coupled ordinary differential equations using exact similarity transformations which are known as Cattaneo–Christov heat flux model for third-grade power-law fluid. The homotopy analysis method (HAM) is utilized to approximate the systematic solutions more precisely with shear-thickening, moderately shear-thinning, and most shear-thinning fluids. The solution depends on various parameters including Prandtl number, power index, and temperature variation coefficient. A systematic analysis of boundary-layer flow demonstrates the impact of these parameters on the velocity and temperature profiles.


Author(s):  
G. Sowmya ◽  
B. Saleh ◽  
R. J. Punith Gowda ◽  
R. Naveen Kumar ◽  
R. S. Varun Kumar ◽  
...  

The study is concerned with the heat transfer in a slip flow of a dusty fluid with the impact of a magnetic field and nonlinear thermal radiation. Furthermore, for the heat transfer process the Cattaneo–Christov heat flux model is used. Suitable similarity transformations are used to transform the governing equations. Later, shooting method and the Runge-Kutta Fehlberg's fourth fifth order (RKF-45) process are utilized to solve these reduced system of nonlinear ordinary differential equations. Impact of numerous involved parameters on the flow, thermal fields of both dust and fluid phase, skin friction and rate of heat transfer are visually plotted through graphs and discussed quantitatively. The significant outcomes drawn from the current study are that, the rise in value of the velocity slip parameter decreases the velocity profile but improves the thermal profile of both the phases. The growing values of curvature parameter intensify the flow and the thermal fields of both phases. The cumulative values of magnetic parameter and dust particle mass concentration parameter declines the velocity and thermal gradients of both phases. The thermal relaxation time parameter decays the temperature profile. The heat transfer rate is strengthened with the growing values of the curvature parameter, the velocity slip parameter, and radiation parameter.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Naveed ◽  
Muhammad Imran ◽  
Zaheer Abbas

Abstract This paper aims to investigate the transfer of heat phenomenon in a hydromagnetic time dependent flow of micropolar fluid across an oscillating stretchable curved surface by using the Cattaneo–Christov heat flux model, which considers thermal relaxation time. An elastic curved surface that stretches back and forth causes the flow situation. The flow equations are derived as nonlinear partial differential equations by incorporating a curvilinear coordinates system, which is then solved analytically via the homotopy analysis method (HAM). The accuracy of the derived analytical results is also examined by using a finite-difference technique known as the Keller box method, and it is found to be in strong agreement. The influences of various physical characteristics such as material parameter, magnetic parameter, thermal relaxation parameter, a dimensionless radius of curvature, Prandtl number and ratio of surface’s oscillating frequency to its stretching rate parameter on angular velocity, fluid velocity, pressure, temperature, heat transmission rate, and skin friction and couple stress coefficient are depicted in detail with the help of graphs and tables. Furthermore, for the verification and validation of the current results, a tabular comparison of the published data in the literature for the case of flat oscillating surface versus curved oscillating surface is carried out and found to be in good agreement.


2018 ◽  
Vol 387 ◽  
pp. 121-134 ◽  
Author(s):  
Manoj Kumar Nayak ◽  
A.K. Abdul Hakeem ◽  
Oluwole Daniel Makinde

Nature of the very idea of Cattaneo-Christov heat flux model and its influence on the mixed convection flow of third grade nanofluid subject to inclined stretched Riga plate has been studied. The study furthers the case for introducing temperature dependent viscosity modeled by Reynolds. A numerical solution of the transformed boundary layer equations has been accomplished by fourth order R-K and shooting methods. The study itself has pointed out that buoyancies (thermal as well as solutal) and viscosity parameters augment the fluid velocity while increase in Deborah number yields unperturbed diminishing trend of non-linear temperature profiles.


2018 ◽  
Vol 615 ◽  
pp. A32
Author(s):  
S. S. A. Silva ◽  
J. C. Santos ◽  
J. Büchner ◽  
M. V. Alves

Context. Heat flux is one of the main energy transport mechanisms in the weakly collisional plasma of the solar corona. There, rare binary collisions let hot electrons travel over long distances and influence other regions along magnetic field lines. Thus, the fully collisional heat flux models might not describe transport well enough since they consider only the local contribution of electrons. The heat flux in weakly collisional plasmas at high temperatures with large mean free paths has to consider the nonlocality of the energy transport in the frame of nonlocal models in order to treat energy balance in the solar atmosphere properly. Aims. We investigate the impact of nonlocal heat flux on the thermal evolution and dynamics of the solar atmosphere by implementing a nonlocal heat flux model in a 3D magnetohydrodynamic simulation of the solar corona. Methods. We simulate the evolution of solar coronal plasma and magnetic fields considering both a local collision dominated and a nonlocal heat flux model. The initial magnetic field is obtained by a potential extrapolation of the observed line-of-sight magnetic field of AR11226. The system is perturbed by moving the plasma at the photosphere. We compared the simulated evolution of the solar atmosphere in its dependence on the heat flux model. Results. The main differences for the average temperature profiles were found in the upper chromosphere/transition region. In the nonlocal heat transport model case, thermal energy is transported more efficiently to the upper chromosphere and lower transition region and leads to an earlier heating of the lower atmosphere. As a consequence, the structure of the solar atmosphere is affected with the nonlocal simulations producing on average a smoother temperature profile and the transition region placed about 500 km higher. Using a nonlocal heat flux also leads to two times higher temperatures in some of the regions in the lower corona. Conclusions. The results of our 3D MHD simulations considering nonlocal heat transport supports the previous results of simpler 1D two-fluid simulations. They demonstrated that it is important to consider a nonlocal formulation for the heat flux when there is a strong energy deposit, like the one observed during flares, in the solar corona.


Sign in / Sign up

Export Citation Format

Share Document