Finite Element Numerical Investigation into Unsteady MHD Radiating and Reacting Mixed Convection Past an Impulsively Started Oscillating Plate

2020 ◽  
Vol 401 ◽  
pp. 47-62
Author(s):  
B. Prabhakar Reddy ◽  
P.M. Matao ◽  
J.M. Sunzu

In this article, numerical investigation is carried out for the unsteady MHD mixed convection flow of radiating and chemically reacting fluid past an impulsively started oscillating vertical plate with variable temperature and constant mass diffusion. The transport model employed includes the Hall current. A uniform magnetic field is applied transversely to the direction of the fluid flow. The flow consideration is subject to small magnetic Reynolds number. The Rosseland approximation is used to describe the radiation heat flux in the energy equation. The dimensionless governing system of partial differential equations of the flow has been solved numerically by employing the FEM. The influence of pertinent parameters on primary velocity, secondary velocity, temperature and concentration are presented graphically whereas primary skin friction, secondary skin friction, Nusselt number and Sherwood number are presented in tabular form. The findings of the present study are in good agreement with the earlier reported studies.

2020 ◽  
Vol 12 (1) ◽  
pp. 38-53
Author(s):  
P.M. Matao ◽  
B. Prabhakar Reddy ◽  
J.M. Sunzu ◽  
O.D. Makinde

In this article, numerical investigation is carried out for the unsteady MHD mixed convection flow of radiating and chemically reacting fluid past an impulsively started oscillating vertical plate with variable temperature and constant mass diffusion. The transport model employed includes the Hall current. A uniform magnetic field is applied transversely to the direction of the fluid flow. The flow consideration is subject to small magnetic Reynolds number. The Rosseland approximation is used to describe the radiation heat flux in the energy equation. The dimensionless governing system of partial differential equations of the flow has been solved numerically by employing the finite element method. The influence of pertinent parameters on primary velocity, secondary velocity, temperature and concentration are presented graphically whereas primary skin friction, secondary skin friction, Nusselt number and Sherwood number are presented in tabular form. A comparison of the present method was madewith the exact solution obtained by Rajput and Kanaujia (2016) by considering primary and secondary skin frictions, it was noticed that a very good agreement. Keywords: MHD, radiation parameter, chemical reaction parameter, magnetic parameter, Hall current.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wubshet Ibrahim ◽  
Temesgen Anbessa

The purpose of this research is to inspect the mixed convection flow of Eyring-Powell nanofluid over a linearly stretching sheet through a porous medium with Cattaneo–Christov heat and mass flux model in the presence of Hall and ion slip, permeability, and Joule heating effects. Proper similarity transforms yield coupled nonlinear differential systems, which are solved using the spectral relaxation method (SRM). The story audits show that the present research problem has not been studied until this point. Efficiency of numerous parameters on velocity, temperature, and concentration curves is exposed graphically. Likewise, the numerical values of skin friction coefficients, local Nusselt, and Sherwood numbers are computed and tabulated for some physical parameters. It is manifested that fluid velocities, skin friction coefficients, local Nusselt, and Sherwood numbers promote with the larger values of Eyring-Powell fluid parameter ε. It is also noticed that primary velocity promotes with larger values of mixed convection parameter λ, Hall parameter βe, and ion slip parameter βi, while the opposite condition is observed for secondary velocity, temperature, and concentration. Furthermore, comparative surveys between the previously distributed writing and the current information are made for explicit cases, which are examined to be in a marvelous understanding.


2016 ◽  
Vol 26 (7) ◽  
pp. 2235-2251 ◽  
Author(s):  
J. Rajakumar ◽  
P. Saikrishnan ◽  
A. Chamkha

Purpose The purpose of this paper is to consider axisymmetric mixed convection flow of water over a sphere with variable viscosity and Prandtl number and an applied magnetic field. Design/methodology/approach The non-similar solutions have been obtained from the origin of the streamwise co-ordinate to the point of zero skin friction using quasilinearization technique with an implicit finite-difference scheme. Findings The effect of M is not notable on the temperature and heat transfer coefficient when λ is large. The skin friction coefficient and velocity profile are enhance with the increase of MHD parameter M when λ is small. Viscous dissipation has no significant on the skin friction coefficient under MHD effect. For M=1, the movement of the slot or slot suction or slot injection do not cause any effect on flow separation. The slot suction and the movement of the slot in downstream direction delay the point of zero skin friction for M=0. Originality/value The present results are original and new for water boundary-layer flow over sphere in mixed convection flow with MHD effect and non-uniform mass transfer. So this study would be useful in analysing the skin friction and heat transfer coefficient on sphere of mixed convection flow of water boundary layer with MHD effect.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Mostafa Mahmoud ◽  
Shimaa Waheed

A theoretical analysis is performed to study the flow and heat transfer characteristics of magnetohydrodynamic mixed convection flow of a micropolar fluid past a stretching surface with slip velocity at the surface and heat generation (absorption). The transformed equations solved numerically using the Chebyshev spectral method. Numerical results for the velocity, the angular velocity, and the temperature for various values of different parameters are illustrated graphically. Also, the effects of various parameters on the local skin-friction coefficient and the local Nusselt number are given in tabular form and discussed. The results show that the mixed convection parameter has the effect of enhancing both the velocity and the local Nusselt number and suppressing both the local skin-friction coefficient and the temperature. It is found that local skin-friction coefficient increases while the local Nusselt number decreases as the magnetic parameter increases. The results show also that increasing the heat generation parameter leads to a rise in both the velocity and the temperature and a fall in the local skin-friction coefficient and the local Nusselt number. Furthermore, it is shown that the local skin-friction coefficient and the local Nusselt number decrease when the slip parameter increases.


2006 ◽  
Vol 33 (4) ◽  
pp. 259-280 ◽  
Author(s):  
Gopal Singha ◽  
P.N. Deka

Unsteady viscous incompressible free convection flow of an electrically conducting fluid between two heated vertical parallel plates is considered in the presence of a uniform magnetic field applied transversely to the flow. The induce field along the lines of motion varies transversely to the flow and the fluid temperature changing with time. An analytical solution for velocity, induced field and the temperature distributions are obtained for small and large magnetic Reynolds numbers. The skin-friction at the two plates is obtained. Velocity distribution, induced field and skin-friction are plotted against the distance from the plates. It has been observed that with the increase in Rm, the magnetic Reynolds number, at constant M, the Hartmann number, leads to an increase in the skin-friction gradually. But with the increase in M, at constant Rm, the skin-friction decreases.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ashish Paul

This paper is concerned with analytical solution of one-dimensional unsteady laminar boundary layer MHD flow of a viscous incompressible fluid past an exponentially accelerated infinite vertical plate in presence of transverse magnetic field. The vertical plate and the medium of flow are considered to be porous. The fluid is assumed to be optically thin and the magnetic Reynolds number is considered small enough to neglect the induced hydromagnetic effects. The governing boundary layer equations are first converted to dimensionless form and then solved by Laplace transform technique. Numerical values of transient velocity, temperature, skin friction, and Nusselt number are illustrated and are presented in graphs for various sets of physical parametric values, namely, Grashof number, accelerating parameter, suction parameter, permeability parameter, radiation parameter, magnetic parameter, and time. It is found that the velocity decreases with increases of the suction parameter for both cases of cooling and heating of the porous plate whereas skin friction increases with increase of suction parameter.


Sign in / Sign up

Export Citation Format

Share Document