Metallographic Documentation of the Degradation of Iron and Nickel Based Alloys in HCl and H2S Containing Environments, between 480 – 680 °C

2020 ◽  
Vol 405 ◽  
pp. 26-32
Author(s):  
Alexander Schmid ◽  
Gregor Mori ◽  
Roland Haubner

Corrosion behavior of the alloys 1.7386 (P9), 1.4462, 1.4841, 1.4959 (Alloy 800HT) and 2.4816 (Alloy 600) was tested for 24, 72 and 240 h between 480 – 680 °C. The testing gas atmosphere contained 3.8 vol. % HCl, 200 ppm H2S and CO, CO2 and N2. It simulated conditions present in a thermal cracking process for post-consumer plastics. Samples were analyzed by metallography, SEM/EDX and XRD after corrosion experiments. Additionally, their mass loss during the test was evaluated. A multilayered structure of corrosion products grew on the samples during the corrosion experiments. The composition of the corrosion products depended not on the material, but on the testing temperature. At 680 °C chromium sulphide formed the outer layer, followed by a chromium oxide layer. Below these two layers a chlorine containing layer was observed. At 480 °C mainly nickel sulphide was detected, besides chromium oxide and iron- and chromium chloride. Especially at higher testing temperatures FeCl2 was not observed directly on the samples, but as colorless crystals at the colder parts of the testing equipment. At 680 °C the mass loss of the samples decreased with increasing nickel content. However, this effect changed entirely at lower testing temperatures. At 480 °C 1.7386 and 2.4816 showed nearly the same mass losses.

Author(s):  
Manuela Nimmervoll ◽  
Gregor Mori ◽  
Edith Bucher ◽  
Stefan Hönig ◽  
Roland Haubner

AbstractThe alloys K90941 and N08811 were tested under conditions simulating a pyrolysis process of post-consumer plastics. Impurities in the plastic feedstock like chlorine containing materials or organic components yield HCl and H2S respectively during the cracking process. The reactor material must be able to withstand these harsh corrosive conditions.In lab-scale test equipment, process conditions of the reactor zone of the pyrolysis process were simulated at temperatures of 420 °C and 580 °C for 72 h. The gas atmosphere consisted of either 200 ppm or 20000 ppm H2S and 3.8 vol% HCl, 1.9 vol% CO2, 0.3 vol% CO, 2.8 vol% H2, bal. N2. After the corrosion experiments, the samples were analyzed by metallography, SEM/EDX, and XRD. Additionally, the mass loss was evaluated. Results show that the ferritic K90941 is more aggressively attacked than the austenitic N08811 and that for both materials the mass loss rises with increasing H2S content in the gas atmosphere and increasing temperature.


2019 ◽  
Vol 492 ◽  
pp. 280-284
Author(s):  
Naoya Miyauchi ◽  
Tomoya Iwasawa ◽  
Taro Yakabe ◽  
Masahiro Tosa ◽  
Toyohiko Shindo ◽  
...  

1987 ◽  
Vol 112 ◽  
Author(s):  
Masaki Tsukamoto ◽  
Inga-Kari Björner ◽  
Hilbert Christensen ◽  
Hans-Peter Hermansson ◽  
Lars Werme

AbstractThe release of Am-241 during corrosion of the radioactive waste glass, JSS-A, has been studied in the presence of corrosion products and/or uncom-pacted bentonite. The corrosion behaviour of Am-241 has been analyzed using gamma spectrometry. Adsorption of Am-241 on bentonite is observed in all cases. The contents of Am-241 in centrifuged leachates are in most cases less than 1/100 of total values. The normalized elemental mass loss of Am increases initially with corrosion time, and the values in the presence of bentonite and corrosion products are larger than those in the presence of bentonite alone. This tendency is in agreement with results previously found for other elements. The release of Am is low, only about 10–20 % of the corresponding total mass loss.


2020 ◽  
Vol 14 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Chenyao Cao ◽  
Jiang Zhu ◽  
Tomohisa Tanaka ◽  
Dinh Ngoc Pham ◽  
◽  
...  

Magnesium and magnesium-based alloys are considered ideal materials for implants in orthopedic treatment because their stiffness is close to that of human bones, and they can be absorbed gradually in the human organism. However, a major issue in their actual application is that the corrosion speed of Mg alloys is very high in aggressive environments such as the human fluids. In previous studies, many approaches have been attempted to enhance the corrosion resistance of Mg alloys. In this research, ball burnishing, a mechanical surface finishing process, is applied to improve the corrosion resistance of Mg alloys by changing its surface properties. The influence of the burnishing parameters on the corrosion resistance is investigated, and the corrosion of a treated and non-treated sample are compared. The test material used is the AZ31 Mg alloy. Firstly, a comprehensive review of the effect of burnishing on the final microstructures is reported. The influence of burnishing on grain size, work-hardened layer thickness, crystal orientation, and residual stress of the sample is discussed. Secondly, by conducting an especially designed long-term immersion test, the mass loss and surface evolution of each sample are evaluated. The experimental results indicate that, under proper processing conditions, the mass loss of the treated sample (8.8 mg) can be reduced to 36% of the non-treated one (24.2 mg). To elucidate the mechanism behind corrosion resistance enhancement by burnishing, the samples treated with the optimal processing parameters found are immersed in an aggressive solution for 1, 3, 5, and 7 days. From the results of mass loss measurement and surface structure characterization, it was found that, among pitting, general, and intergranular corrosion, pitting corrosion is the dominant corrosion mechanism. The holes enlarge because pits combine together, representing the greatest portion of mass loss. The main mechanism enhancing corrosion resistance is the size reduction of the grains on the surface induced by ball burnishing, causing a denser distribution of corrosion products in the immersion test. These corrosion products protect the material underneath accelerated corrosion.


1975 ◽  
Vol 40 (309) ◽  
pp. 65-69 ◽  
Author(s):  
E. H. Nickel ◽  
P. J. Bridge

SummaryThe garnierite, which occurs in the oxide zone overlying a nickel sulphide deposit, consists of talc-like and serpentine-like components, with the former predominating. Chemical and electron-probe analyses give NiO contents ranging between 39.6 and 43.9 weight %.


1999 ◽  
Vol 586 ◽  
Author(s):  
Jesus Noel Calata ◽  
Guo-Quan Lu ◽  
Thomas A. Kuhr

ABSTRACTSintered coatings of cordierite-base glass-ceramic do not adhere readily on bare molybdenum substrates. This is due to the absence of a stable metal oxide film on the substrate that serves as a suitable transition layer between the glass-ceramic and the substrate. To address this problem, dual layers of either chromium/nickel or chromium/copper were deposited by electroplating on the molybdenum substrates. Glass powder in slurry form was then cast on the substrates using a doctor blade and sintered in a helium-hydrogen atmosphere at 950°C. The metallic interlayer structure was found to produce an excellent bond between the coating and the substrate. The adhesion of the coatings was observed to be sensitive to the thickness of the deposited metal layers. Quantitative chemical analysis of the interface region was performed to explain the difference in adhesion quality. In all instances, the fracture surface was found to occur at the chromium oxide/chromium boundary providing a clear indication that the chromium oxide layer plays an important role in enhancing the adhesion. The superior adhesion in samples with the Cr-Cu interface was attributed to Cu acting as an effective diffusion barrier to Mo. Cr however, was able to diffuse through the Cu layer enhancing the bond between Mo and Cu by alloying with the Mo. Ni was not as effective as Cu in preventing the diffusion of Mo towards the glass-ceramic coating but a thicker Cr layer still produced a strong bond. In samples where the distinct Cr layer was either too thin or non-existent, adhesion was poor possibly because the Cr oxide does not bond well to the Ni-Cr alloy layer that formed after firing.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5672
Author(s):  
Jan Švadlena ◽  
Tomáš Prošek ◽  
Kristýna Charlotte Strachotová ◽  
Milan Kouřil

Restoration treatment, specimen preparation or mass loss measurements on coupons made of lead require a reliable process of dissolution of corrosion products. In this study, several types of model corrosion products with compositions representative of those found on real objects were prepared and characterized. Ten solutions were then thoroughly tested in interval cleaning experiments, regarding the efficiency of removal of the corrosion products, corrosivity towards bare lead, and remnants left on the surface. The solution recommended in the current version of the ISO 8470 standard was found to be improper for the cleaning of both historical artefacts and corrosion coupons due to its inability to remove sulfide corrosion products and the risk of surface contamination and staining. A solution of 20% hydrochloric acid is the best choice for the preparation of lead coupons before exposure or for evaluation of mass loss of exposed samples because its somewhat higher corrosivity towards metallic lead is tolerable for these applications. Rochelle salt solution was found to be optimal for the cleaning of historical artefacts free of sulfide corrosion products due to the lowest corrosivity. None of these alternative solutions leave remnants on the surface and they are efficient at laboratory temperature.


Sign in / Sign up

Export Citation Format

Share Document