Synthesis and Performance Characterization of Nanolubricants Proposed for Heavy Load Ball Bearing

2018 ◽  
Vol 54 ◽  
pp. 75-87 ◽  
Author(s):  
S. Nallusamy

Currently, nanofluids have been found to have enriched physical and thermal properties such as thermal conductivity, viscosity and convective heat transfer coefficients. The aim of this research is to analyse the performance characteristics of punga oil and plastic oil based nanolubricants. The nanoparticle of graphite with 0.1% weight was added to the base oils. Hydraulic oil of VG32 is used as standard oil to compare the performance with the nanolubricants. Basic properties such as viscosity, flash and fire point were measured for the prepared nanolubricants. Coefficient of friction for the selected oils was measured with help of reciprocating friction monitor and load wear index was also measured with the help of four ball tester. The performance of these oils for load ball bearing lubrication was carried out numerically with the help of Comsol software and its analytical validation was done with the help of MATLAB software. From the observed results it was found that, the power loss was decreased by about 77.4% and 78% by plastic oil and plastic oil based nanolubricant respectively and load carrying capacity was also decreased by about 78.3% and 78.8%.

Author(s):  
Ajay Kumar Kaviti ◽  
Akkala Siva Ram ◽  
Amit Kumar Thakur

In this experimental study, permanent magnets with three different sizes (M-1: 32 mm inner diameter, 70 mm outer diameter and 15 mm thick, M-2: 25 mm inner diameter, 60 mm outer diameter and 10 mm thick, M-3: 22 mm inner diameter, 45 mm outer diameter and 9 mm thick) are fully submerged in the single-slope glass solar still. The performance of magnetic solar stills (MSS) with three different sizes at 2 cm depth water to ensure that magnets are fully submerged is compared with conventional solar still (CSS) at the location 17.3850°N, 78.4867°E. Tiwari model is adapted to calculate the heat transfer coefficients (HTC), internal and exergy efficiencies. MSS with M-1, M-2 and M-3 significantly enhanced the convective, radiative, and evaporative heat transfer rate for the 2 cm depth of water. This is due to the desired magnetic treatment of water, which reduces the surface tension and increases the hydrogen bonds. The MSS's total internal HTC, instantaneous efficiencies led CSS by 25.52%, 28.8%, respectively, with M-1. Having various magnetic fields due to different magnets sizes increases MSS's exergetic efficiency by 33.61% with M-1, 33.76% with M-2, and 42.25% with M-3. Cumulative yield output for MSS with M-1, M-2, and M-3 is 21.66%, 17.64%, 15.78% higher than CSS. The use of permanent magnets of different sizes in the MSS is a viable, economical and straight forward technique to enhance productivity.


2001 ◽  
Vol 123 (4) ◽  
pp. 704-708 ◽  
Author(s):  
A. A. Ameri

Experimental and computational studies have been performed to investigate the detailed distribution of convective heat transfer coefficients on the first-stage blade tip surface for a geometry typical of large power generation turbines (>100 MW). In a previous work the numerical heat transfer results for a sharp edge blade tip and a radiused blade tip were presented. More recently several other tip treatments have been considered for which the tip heat transfer has been measured and documented. This paper is concerned with the numerical prediction of the tip surface heat transfer for radiused blade tip equipped with mean-camberline strip (or “squealer” as it is often called). The heat transfer results are compared with the experimental results and discussed. The effectiveness of the mean-camberline strip in reducing the tip leakage and the tip heat transfer as compared to a radiused edge tip and sharp edge tip was studied. The calculations show that the sharp edge tip works best (among the cases considered) in reducing the tip leakage flow and the tip heat transfer.


2016 ◽  
Vol 3 ◽  
pp. 52-55 ◽  
Author(s):  
Rainer Pauska ◽  
Umut Cakmak ◽  
Rainer Lottes ◽  
Zoltan Major

Joining experiments using different adhesives were carried out. In addition to the adhesive, the specimens were also treated with ultrasonic waves to improve the load carrying capacity of the joined parts. Lap joint shear tests have been conducted to quantify this improvement.


2020 ◽  
Vol 327 ◽  
pp. 03004
Author(s):  
D. Santana Sanchez ◽  
A. Mostafa

The present paper discusses the design analysis and limitations of the steering system of a buggy. Many geometrical and performance characteristics of the designed steering system were considered to address the kinematic constraints and load carrying capacity of the steering elements. Ackremann geometry approach was used to assess the limiting steering angle, while Lewis bending formula with the inclusion of dynamic effects was employed to characterise the flexural properties of the rack and pinion steering system. Analytical results were numerically verified using ABAQUS/Explicit nonlinear finite element (FE) package. Good agreement has been achieved between analytical and numerical results in predicting the flexural behaviour of the steering rack and pinion system.


2009 ◽  
Vol 68 ◽  
pp. 167-174 ◽  
Author(s):  
Jerry Wong ◽  
Patricia del C. Zambrano ◽  
Martha Patrizia Guerrero-Mata ◽  
Victor Mucino ◽  
Rafael Colás

A series of linear and spot stir welding friction tests were carried out on aluminum samples of 1 mm in thickness and area of 100 mm x 27 mm. The tool rotating speed was varied from 2000 to 4000 RPM and the feeding rate from 45 to 67.8 mm/min. The temperature distribution during welding was measured by thermocouples inserted within the aluminum strips. The microstructure of the welded nuggets and the HAZ were analyzed by optical and scanning electron microscopy. Some samples were tested intension to measure the load carrying capacity of the welded bead. Preliminary analyses indicate that the temperature at the heat affected zone increases with the rotating speed.


Sign in / Sign up

Export Citation Format

Share Document