Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT)

2019 ◽  
Vol 57 ◽  
pp. 117-135 ◽  
Author(s):  
Aicha Draoui ◽  
Mohamed Zidour ◽  
Abdelouahed Tounsi ◽  
Belkacem Adim

Based on the first order shear deformation plate theory (FSDT) in the present studie, static and dynamic behavior of carbon nanotube-reinforced composite sandwich plates has been analysed. Two types of sandwich plates, namely, the sandwich with face sheet reinforced and homogeneous core and the sandwich with homogeneous face sheet and reinforced core are considered. The face sheet or core plates are reinforced by single-walled carbon nanotubes with two types of distributions of uniaxially aligned reinforcement material which uniformly (UD-CNT) and functionally graded (FG-CNT). The analytical equations are derived and the exact solutions for bending and vibration analyses of such type’s plates are obtained. The mathematical models provided and the present solutions are numerically validated by comparison with some available results in the literature. Influence of Various parameters of reinforced sandwich plates such as aspect ratios, volume fraction, types of reinforcement and plate thickness on the bending and vibration analyses of carbon nanotube-reinforced composite sandwich plates are studied and discussed. The findings suggest that the (FG-CNT) face sheet reinforced sandwich plate has a high resistance against deflections compared to other types of reinforcement. It is also revealed that the reduction in the dimensionless natural frequency is most pronounced in core reinforced sandwich plate.

2018 ◽  
Vol 22 (8) ◽  
pp. 2818-2860 ◽  
Author(s):  
Paul Praveen A ◽  
Vasudevan Rajamohan ◽  
Ananda Babu Arumugam ◽  
Arun Tom Mathew

In the present study, the free and forced vibration responses of the composite sandwich plate with carbon nanotube reinforced honeycomb as the core material and laminated composite plates as the top and bottom face sheets are investigated. The governing equations of motion of hybrid composite honeycomb sandwich plates are derived using higher order shear deformation theory and solved numerically using a four-noded rectangular finite element with nine degrees of freedom at each node. Further, various elastic properties of honeycomb core materials with and without reinforcement of carbon nanotube and face materials are evaluated experimentally using the alternative dynamic approach. The effectiveness of the finite element formulation is demonstrated by performing the results evaluated experimentally on a prototype composite sandwich plate with and without carbon nanotube reinforcement in core material. Various parametric studies are performed numerically to study the effects of carbon nanotube wt% in core material, core thickness, ply orientations, and various boundary conditions on the dynamic properties of composite honeycomb sandwich plate. Further, the transverse vibration responses of hybrid composite sandwich plates under harmonic force excitation are analyzed at various wt% of carbon nanotubes and the results are compared with those obtained without addition of carbon nanotubes to demonstrate the effectiveness of carbon nanotube reinforcement in enhancing the stiffness and damping characteristics of the structures. The study provides the guidelines for the designer on enhancing both the stiffness and damping properties of sandwich structures through carbon nanotube reinforcement in core materials.


2020 ◽  
pp. 107754632094833 ◽  
Author(s):  
Rasoul Rostami ◽  
Mehdi Mohammadimehr

In this article, the vibration control of the sandwich plate reinforced by carbon nanotube in the face sheet and porous core integrated with sensor and actuator layers is investigated. The piezoelectric layers at the bottom and top surfaces of the sandwich plate play the role of the sensor and actuator. By applying the Hamilton’s principle, the governing equations of the structure are derived based on the first-order shear deformation theory. The perturbation method is used to find the relationships between nonlinear frequency and amplitude response of the sandwich plate. The effect of porosity coefficient, temperature, volume fraction of carbon nanotube, and geometric parameters on nonlinear frequency and vibration control of the sandwich plate is studied. Moreover, the influence of material type of sensor and actuator and scale transformation parameter on the nonlinear frequency and vibration control of the system is investigated. According to the obtained results, in the case of ε < 0, the system stiffness presents softening behavior, whereas in the case of ε > 0, the system stiffness becomes hardening. By considering the effect of the voltage coefficient on the vibration control and the needed time for stabilization, the results of this article can be used to design, manufacture, and control modern structures.


2011 ◽  
Vol 471-472 ◽  
pp. 1159-1164 ◽  
Author(s):  
Mehdi Hosseini ◽  
Seyyed Mohammad Reza Khalili ◽  
Keramat Malekzadeh Fard

In this article a closed form solution is derived for the deformation response of a composite sandwich plate subjected to static indentation of a flat-ended cylindrical indenter. The facesheet deflection is several times the laminate thickness so that bending moments may be neglected and only membrane forces are considered in the facesheet. In contrast to the existing analytical model for the indentation of composite sandwich plates, in the present model, the stacking sequence of the facesheets can be completely arbitrary, so that the shear-extension coupling terms, i.e. and , can also be included in the analysis. Furthermore, in the present model the effects of the initial in-plane normal and shear stresses on the edges of the sandwich plate are also considered. An improved contact law is derived based on the minimum total potential energy principle. The elastic strain energy, the plastic work dissipated in crushing the core and the external work are calculated using an appropriate shape function for the facesheet deflection. The relations between the indentation load and the deflection and length of deformation are obtained by minimization of the total potential energy. Analytical predictions of the load-indentation response compare well with experimental results. The effects of stacking sequence, ply thickness, number of layers and initial in-plane forces on the load-indentation response are studied and discussed.


Author(s):  
A Ghorbanpour Arani ◽  
M Mosayyebi ◽  
F Kolahdouzan ◽  
R Kolahchi ◽  
M Jamali

Damped free vibration of carbon nanotube reinforced composite microplate bounded with piezoelectric sensor and actuator layers are investigated in this study. For the mathematical modeling of sandwich structure, the refined zigzag theory is applied. In addition, to present a realistic model, the material properties of system are supposed as viscoelastic based on Kelvin–Voigt model. Distributions of single-walled carbon nanotubes along the thickness direction of the viscoelastic carbon nanotube reinforced composite microplate are considered as four types of functionally graded distribution patterns. The viscoelastic functionally graded carbon nanotube reinforced composite microplate subjected to electromagnetic field is embedded in an orthotropic visco-Pasternak foundation. Hamilton’s principle is employed to establish the equations of motion. In order to calculate the frequency and damping ratio of sandwich plate, boundary condition of plate is assumed as simply-supported and an exact solution is used. The effects of some significant parameters such as damping coefficient of viscoelastic plates, volume fraction of carbon nanotubes, different types of functionally graded distributions of carbon nanotubes, magnetic field, and external voltage on the damped free vibration of system are investigated. Results clarify that considering viscoelastic property for system to achieve accurate results is essential. Furthermore, the effects of volume fraction and distribution type of carbon nanotubes are remarkable on the vibration of sandwich plate. In addition, electric and magnetic fields are considerable parameters to control the behavior of viscoelastic carbon nanotube reinforced composite microplate. It is hoped that the results of this study could be applied in design of nano/micromechanical sensor and actuator systems.


2016 ◽  
Vol 20 (3) ◽  
pp. 308-350 ◽  
Author(s):  
Ramesh Babu Vemuluri ◽  
Vasudevan Rajamohan ◽  
Ananda Babu Arumugam

This study investigates the dynamic performance of the partially treated magnetorheological elastomer tapered composite sandwich plates. Various partially treated tapered magnetorheological elastomer laminated composite sandwich plate models are formulated by dropping-off the plies longitudinally in top and bottom composite face layers to yield tapered plates as the face layers. The uniform rubber and magnetorheological elastomer materials are considered as the core layer. The governing differential equations of motion of the various partially treated magnetorheological elastomer tapered composite sandwich plate configurations are derived using classical laminated plate theory and solved numerically. Further, silicon-based magnetorheological elastomer and natural rubber are being fabricated and tested to identify the various mechanical properties. The effectiveness of the developed finite element formulation is demonstrated by comparing the results obtained with experimental tests and available literature. Also, various partially treated magnetorheological elastomer tapered laminated composite sandwich plates are considered to the study the effect of location and size of magnetorheological elastomer segment on various dynamic properties under various boundary conditions. The effects of magnetic field on the variation of natural frequencies and loss factors of the various partially treated magnetorheological elastomer tapered laminated composite sandwich plate configurations are analysed at different boundary conditions. Also, the effect of taper angle of top and bottom layers, aspect ratio, ply orientations on the natural frequencies of different configurations are analysed. Further, the transverse vibration responses of three different partially treated magnetorheological elastomer tapered laminated composite sandwich plate configurations under harmonic excitation are analysed at various magnetic fields. This analysis suggests that the location and size of the magnetorheological elastomer segments strongly influence the natural frequency, loss factor and transverse displacements of the partially treated magnetorheological elastomer tapered laminated composite sandwich plates apart from the intensities of the applied magnetic field. This shows the applicability of partial treatment to critical components of a large structure to achieve a more efficient and compact vibration control mechanism with variable damping.


Sign in / Sign up

Export Citation Format

Share Document