Synthesis and Luminescence Properties of Yb3+/Ho3+ Co-Doped Lu2O3 Nanocrystalline Powders

2007 ◽  
Vol 280-283 ◽  
pp. 521-524
Author(s):  
Li Qiong An ◽  
Jian Zhang ◽  
Min Liu ◽  
Sheng Wu Wang

Yb3+ and Ho3+ co-doped Lu2O3 nanocrystalline powders were synthesized by a reversestrike co-precipitation method. The as-prepared powders were examined by the X-ray diffraction and transmission electron microscopy. The phase composition of the powders was cubic and the particle size was in the range of 30~50 nm. Emission and excitation spectra of the powders were measured by a spectrofluorometer and the possible upconversion luminescence mechanism was also discussed.

2016 ◽  
Vol 16 (4) ◽  
pp. 3534-3541
Author(s):  
Yanqiu Zhang ◽  
Baojiu Chen ◽  
Xiangping Li ◽  
Jiashi Sun ◽  
Jinsu Zhang ◽  
...  

Nanosized Gd6WO12 phosphors containing various Er3+ concentrations and fixed Yb3+ concentration were synthesized by a co-precipitation method. The crystal structure and microscopic morphology of the obtained nanophosphors were characterized by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Two-photon processes for both the green and red upconversion (UC) emissions were confirmed by analyzing the dependence of UC intensities on 980 nm laser working current. UC emission intensity changing with temperature displays different trends for the samples with different Er3+ concentrations. The experimental results indicated that thermal quenching behavior of UC luminescence could not be simply explained by crossover mechanism. The enhancement for green UC emission in the sample with higher Er3+ concentration was discussed. Finally, the Er3+ concentration dependence of UC luminescence was experimentally observed, and its mechanisms were analyzed.


2014 ◽  
Vol 879 ◽  
pp. 155-163 ◽  
Author(s):  
Rahizana Mohd Ibrahim ◽  
Markom Masturah ◽  
Huda Abdullah

Nanoparticles of Zn1-xFexS ( x=0.0,0.1,0.2 and 0.3) were prepared by chemical co-precipitation method from homogenous solution of zinc and ferum salt at room temperature with controlled parameter. These nanoparticles were sterically stabilized using Sodium Hexamethaphospate (SHMP). Here, a study of the effect of Fe doping on structure, morphological and optical properties of nanoparticles was undertaken. Elemental analysis, morphological and optical properties have been investigated by Fourier-Transform-Infrared spectroscopy (FT-IR), X-Ray Fluorescence (XRF), Field Emmision Scanning Electron Microscopy (FESEM), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and UV-Visible Spectroscopy. FTIR measurement confirmed the presence of SHMP in the nanoparticles structure with the FESEM images depicting considerable less agglomeration of particles with the presence of SHMP. While XRF results confirm the presence of Fe2+ ion as prepared in the experiment. The particles sizes of the nanoparticles lay in the range of 2-10 nm obtained from the TEM image were in agreement with the XRD results. The absorption edge shifted to lower wavelengths with an increase in Fe concentration shown in the UV-Vis spectroscopy. The band gap energy value was in the range of 4.95 5.15 eV. The blueshift is attributed to the quantum confinement effect.


2011 ◽  
Vol 347-353 ◽  
pp. 1416-1419
Author(s):  
You Ning Xu ◽  
Hai Zhao ◽  
Duo Jiao Guan

Fe-Mn-Ce metal oxides nanosized particles have been prepared by co-precipitation approach using three kinds of precipitants NaOH, NH4OH and Na2CO3. The products were characterized by Powder X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and BET study. It was found that the samples prepared with NH4OH as a precipitator show higher surface areas and larger sulfur capacity at low calcinations temperature. At high reaction temperatures, the samples prepared with Na2CO3 as precipitator exhibited much better activities for SCR of nitric oxide with ammonia than catalysts prepared with NH4OH and NaOH as the precipitants.


2012 ◽  
Vol 271-272 ◽  
pp. 320-323
Author(s):  
Xiao Chun Ma ◽  
Lei Hao Cui ◽  
Guang Fei Xu

In this paper, the Fe3O4 magnetic nanometer particle was prepared by co-precipitation method. At the same time, the samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the surface active agent (PEG4000) can be good for the dispersion performance of Fe3O4 magnetic nanometer particle; and the temperature of 80°C is the appropriate drying temperature to prepare the Fe3O4 magnetic nanometer particle.


Author(s):  
Fengfeng Li ◽  
Mingxi Zhang ◽  
Jin Wang ◽  
Yongfeng Cai ◽  
Dushao Zhao ◽  
...  

Abstract In this work, we fabricate a highly efficient photocatalytic AgBr/Ag2CO3 heterojunction through the co-precipitation method. The obtained samples were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectra and X-ray photoelectron spectroscopy. The photocatalytic activities of obtained samples can be assessed by visible light (λ ≥ 400 nm) degradation of rhodamine B solution. X-ray diffraction revealed that the crystallinity of the AgBr/Ag2CO3heterojunction was significantly higher than pure AgBr and Ag2CO3. Moreover, the AgBr/ Ag2CO3 heterojunction prepared at pH = 6 has the best photocatalytic performance, it can raise the degradation degree of rhodamine B over 95% at 20 min. Finally, a possible photocatalytic mechanism is discussed.


2015 ◽  
Vol 778 ◽  
pp. 183-186
Author(s):  
Yan Xia Han ◽  
Qian Nan Li ◽  
Hai Yun Shen ◽  
Qiu Hua Yang

Ce3+doped cubic KLaF4system was synthesized by co-precipitation method. The sample was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectrophotometer and fluorescence spectrophotometer. The result indicated the nanoparticle diameter of KLaF4:Ce3+was 12.5 nm. The KLaF4:Ce3+had a stronger absorption at 250 nm, which could be explained by d elecronic transition of Ce3+. The maximum emission peak of KLaF4:Ce3+was 355 nm in its luminescent spectrum, and emission band of Ce3+also belonged to 5d→4f transition.


2008 ◽  
Vol 368-372 ◽  
pp. 635-637
Author(s):  
Jian Feng Huang ◽  
Li Yun Cao ◽  
Jian Peng Wu ◽  
Hai Yan He

Nanocrystalline Y2BaCuO5 was prepared by a co-precipitation method with aid of ultrasonic irradiation using Y2O3, CuCl2 and BaCl2 as source materials. The crystallization and morphology of the prepared nanoparticles were characterized by X-ray diffraction and transmission electron microscopy. Results showed that Y2BaCuO5 monophase can be prepared at 900°C with NaOH + NaCO3 mixture as precipitator. Particle size of Y2BaCuO5 crystallites decreases with the increase of sonicating power. Around 30 nm Y2BaCuO5 crystallites could be achieved when sonicating power increased to 300 W.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Sign in / Sign up

Export Citation Format

Share Document