High-Speed Bonding of Resin-Coated Cu Wire and Sn Electrode with Ultrasonic Bonding for High-Frequency Chip Coil

2005 ◽  
Vol 297-300 ◽  
pp. 2819-2824 ◽  
Author(s):  
Ikuo Shohji ◽  
Tsukasa Sakurai ◽  
Shinji Arai

High-speed ultrasonic bonding method has been developed to join resin-coated Cu wire on Sn electrodes for high-frequency chip coils. Two-step amplitude method, which decreases the ultrasonic amplitude in the bonding process, was effective to join the resin-coated Cu wire on Sn electrodes. The surface roughness treatment for a bonder head accelerated the deformation of the wire in the bonding process and improve the bondability compared to using the bonder head without that treatment. This paper also describes bonding properties of the joint and the bonding mechanism.

2013 ◽  
Vol 1 (2) ◽  
Author(s):  
P. W. Wang ◽  
C. S. Yang

A dynamic model for analyzing the wire transport system of micro w-EDM (wire electronic discharge machining) is proposed. Based on the model, two mechanisms are proposed to stabilize the wire tension. The first mechanism is the active wire feed apparatus where the wire spool is fed by a motor actively, instead of passively pulled by the windup motor. Hence, the inertia loading of the wire spool can be isolated from the system. The second mechanism is mounting a multilayer damped vibration absorber (MDVA) on the system. As the wire tension variation occurs, the MDVA oscillates to attenuate the wire tension variation. The performances of both mechanisms on the wire tension variation are theoretically investigated and experimentally validated through corner cutting on the 1.0 mm thickness tungsten carbide. Results show that the wire tension variation can be reduced from 10.3 gf to 3.3 gf after mounting the active wire feed apparatus and the oscillation frequency is increased from 13 Hz to 21 Hz. The wire tension variation can be further reduced to 1.9 gf after mounting the MDVA on the system and the high frequency perturbation is significantly attenuated. The 30-deg corner cutting shows that the corner error are significantly reduced from 26.0 μm to 12.0 μm; the standard deviation of kerf is reduced from 4.34 μm to 0.96 μm, and the surface roughness Ra is reduced from 1.15 μm to 0.63 μm after employing both developed mechanisms.


Author(s):  
Yangyang Long ◽  
Folke Dencker ◽  
Andreas Isaak ◽  
Chun Li ◽  
Marc Wurz ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Tae-Wan Kim ◽  
Kyung-Lim Suk ◽  
Sang-Hoon Lee ◽  
Kyung-Wook Paik

In this study, solder ball incorporated polyvinylidenefluoride (PVDF) nanofiber was added into the ACF system to overcome short circuit issues of fine pitch flex-on-flex (FOF) assembly. Also, in order to improve the thermal mismatch of the flexible substrate which can lead to electrode misalignment during the bonding process, low melting temperature Sn58Bi solder balls were used with vertical ultrasonic (U/S) bonding method. When performing FOF assembly using PVDF nanofiber/Sn58Bi solder ACF and vertical ultrasonic bonding, PVDF nanofiber/Sn58Bi solder ACFs showed 34% higher solder capture rate on an electrode compared to conventional Ni ACFs and conventional Sn58Bi solder ACFs. Additionally, PVDF nanofiber/Sn58Bisolder ACFs showed 100% insulation between neighboring electrodes where conventional Ni ACFs and conventional Sn58Bi solder ACFs showed 75% and 87.5% insulation. Other electrical properties such as contact resistance and current handling capability as well as reliability test of PVDF nanofiber/Sn58Bi solder ACFs showed improved results compared to those of conventional Ni ACFs, which proves the formation of stable solder joint of PVDF nanofiber/Sn58Bi solder ACFs.


2013 ◽  
Vol 834-836 ◽  
pp. 812-815
Author(s):  
Ming Zhao ◽  
Dong Ying Ju

The study is diffusion bonding of Mg-AZ31 and Al-6061 under pressure and no pressure by using the direct bonding method. After bonding process, characteristics phase in interface and bonding boundaries of Mg-AZ31/Al-6061 were characterized . The diffusion formation was observed by SEM. Aluminum solid solution and Mg17Al12 alloy phase was proved by analysis of XRD. In the process of measurement, crystalline structure of nearby interface characteristics phase was analyzed in detail by TEM. Based on the above analysis, the crystal model of the magnesium alloy and aluminum alloys was established under pressure, and the bonding mechanism was discussed. The results show that the bonding materials could be bonded under no pressure and the structure of bonding interface is more optimized than pressure.


2021 ◽  
Author(s):  
Yibo Sun ◽  
Mengruo Cao ◽  
Li Zou ◽  
Xinhua Yang

Abstract Ultrasonic precise bonding is an emerging technology in the application of polymer micro-assembly. In the ultrasonic bonding process, the propagation of ultrasound varies with the change of the interfacial polymer physical state. So the ultrasonic guided wave is an effective parameter to in-situ monitor the fusion degree. The ultrasonic guided wave in the ultrasonic bonding process is studied by vibration analysis and online visual monitoring in this paper. The time-frequency characteristics in the ultrasonic guided wave in the bonding process are mainly analyzed by Fast Fourier Transform spectrum analysis, Wavelet Packet Decomposition, and envelope spectrum methods. The polymer interfacial fusion is monitored by the high-speed HD camera in the ultrasonic bonding process. The time-frequency characteristics in the ultrasonic guided wave and the fusion behavior of the thermal melt interface are analyzed and correlated. Results indicate that the change of the interfacial thermal melt state is related to the time-frequency characteristics of the ultrasonic guided wave. The fusion of the melting zone, the rotation of the micro-device, the generation or disappearance of local air bubbles all lead to the changing of the harmonic frequency and intensity in the ultrasonic bonding process.


2011 ◽  
Vol 188 ◽  
pp. 145-149
Author(s):  
Bin Jiang ◽  
S.C. Yang ◽  
Yin Jin Yang ◽  
Min Li Zheng ◽  
P. Sun

Aim at the uncertainty of vibration behavior in high speed ball-end milling hardened steel, carried out the experiment of high speed milling hardened steel and modal analysis of cutter, studied vibration behavior of cutter and workpiece, and established vibration behavior sequence of high speed milling hardened steel. Using gray system theory, did gray cluster analysis of vibration characteristics, explored the correlation among cutter vibration, workpiece vibration and surface roughness characteristics, put forward the method of characterizing vibration characteristics in high speed ball-end milling hardened steel. The results show that high frequency vibrations of cutter and workpiece are caused by the interaction of centrifugal and dynamic cutting force, the increase of cutter overhang enhances high frequency vibration of cutter, the characteristic of cutter vibration changes from low frequency vibration to interaction of low frequency vibration and high frequency vibration. Using cutters with different overhang, surface roughness of high speed milling hardened steel has similar characteristics, surface roughness in row spacing direction can characterize low frequency vibration of cutter, and surface roughness in feed can characterize resonance characteristic of cutter caused by high frequency vibrations of cutter and workpiece.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Sign in / Sign up

Export Citation Format

Share Document