Finite Element Analysis of Fracture Process of Weld Specimen

2005 ◽  
Vol 297-300 ◽  
pp. 710-715 ◽  
Author(s):  
Sung Yong Yang ◽  
Byeong Choon Goo

Mechanical behavior and fracture process of weld specimens were analyzed by finite element method. Three-dimensional butt-weld specimen was modeled by two-dimensional approaches. Welding residual stress in the models was obtained by carrying out thermo-mechanical calculation. To take into account straight boundary lines of real weld specimen, the finite element model was constructed by using an iterative method. Cohesive zone method was applied to analyze fatigue behavior of the models.

2013 ◽  
Vol 273 ◽  
pp. 588-592
Author(s):  
Zhi Yuan Yan ◽  
Dong Mei Wu ◽  
Li Tao Zhang ◽  
Jun Zhao

In order to obtain high-quality analytical results of the finite element model, it is essential to construct a three dimensional geometric model. The paper reconstructed an accurate three dimensional geometric model of cervical spine segments (C4-C7). The process of reconstruction included three-dimensional reconstruction, smooth processing, contour generation, grid generation and fitting surface. Moreover, the result of reconstruction was evaluated ultimately. The model was validated to be smooth and reasonable, and could meet the requirements of finite element analysis. The method is not merely applied to reconstruct the geometric model of the cervical spine. It is a way to construct the model of the skeletal system of the human body.


2010 ◽  
Vol 42 ◽  
pp. 449-452
Author(s):  
Bao Yu Du ◽  
Xiao Zhuo Xu ◽  
Bo Zhao

A single-axis ultrasonic levitator applied in containerless processing of materials was introduced. It could suspend steel ball with density of 7.9 g/cm3 as well as else material samples easily. The finite element model of singe-axis ultrasonic levitator was developed to study the incident acoustic fields. Three-dimensional distribution of time-averaged potential is focused and the results are successful to confirm some experimental phenomena such as the movement of sample along concave reflector and the deviation of object near the reflector.


2012 ◽  
Vol 170-173 ◽  
pp. 1971-1976
Author(s):  
Hong Yun Si ◽  
Min Chen

This paper mainly introduces how to use the software of Marc to calculate the displacement and stress of the sluice. The finite element model which concludes the sluice, piles and foundation was structured for calculation and analysis using the contact analysis function provided by the program. the displacement and stress of the massive structure was worked out to estimate its whole stability and evaluate workability state of the sluice under different structures. The example shows that the results of 3D finite element analysis can be used to accurately reflect the state of the buildings overall strength and displacement. The integral floor structure of contrary arch floor sluice is better than the separated floor structure to adapt to the foundation uneven settlement, but the separated floor structure of contrary arch floor sluice makes stress form more reasonable.


2014 ◽  
Vol 620 ◽  
pp. 24-27 ◽  
Author(s):  
Zhi Dong Huang ◽  
Yun Pu Du ◽  
Liang Zhao ◽  
Ke Gang Zhu ◽  
Hong Ji ◽  
...  

Based on Solidworks software, the three-dimensional model of two wheels scooter is set up. The finite element model of two wheels scooter is generated. Finite element analysis of telescopic mechanism of bar on two wheels scooter is investigated. The stress and strain of telescopic mechanism of bar is investigated. The stress diagram and the strain diagram are obtained. The method and the result can be used as a reference of innovative design of two wheels scooter.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yan Chen ◽  
Qiang Gao ◽  
Zhenqun Guan

By considering the tightening process, a three-dimensional elastic finite element analysis is conducted to explore the mechanism of bolt self-loosening under transverse cyclic loading. According to the geometrical features of the thread, a hexahedral meshing is implemented by modifying the node coordinates based on cylinder meshes and an ABAQUS plug-in is made for parametric modeling. The accuracy of the finite element model is verified and validated by comparison with the analytical and experimental results on torque-tension relationship. And, then, the fastening states acquired by different means are compared. The results show that the tightening process cannot be replaced by a simplified method because its fastening state is different from the real process. With combining the tightening and self-loosening processes, this paper utilizes the relative rotation angles and velocities to investigate the slip states on contact surfaces instead of the Coulomb friction coefficient method, which is used in most previous researches. By contrast, this method can describe the slip states in greater detail. In addition, the simulation result reveals that there exists a creep slip phenomenon at contact surface, which causes the bolt self-loosening to occur even when some contact facets are stuck.


1970 ◽  
Vol 1 ◽  
pp. 19-21
Author(s):  
Enrique Morales Orcajo

A three dimensional muscle detailed human anklefoot model was created. Starting from computed tomographies all bones and muscles of the foot were reconstructed. The development process, the modelfeatures and the thresholding and smoothing problems are explained. The finite element model developed will be used to study the mechanical performance of each muscle and bone allowing to simulate any pathology, treatment or surgery of the foot.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


Sign in / Sign up

Export Citation Format

Share Document