Development of Smart Stress Memory Sensor Using AE Kaiser Effect

2006 ◽  
Vol 321-323 ◽  
pp. 244-247
Author(s):  
Shoichi Nambu ◽  
Yoshihiko Tsunawaki ◽  
Manabu Enoki

Reliability of structures is an important task to ensure the ease and safety of our life, and further development of non-destructive evaluation for structures such as bridges and tunnels is required. Some fatigue sensors that consist of sacrificed specimen have been developed to evaluate the fatigue damage of structures such as fatigue cyclic number and residual lifetime. However, these fatigue sensors can be used only when the applied stress amplitude is known. We tried to develop a new smart stress memory patch that measured both maximum stress and number of fatigue cycles simultaneously using Kaiser effect of Acoustic Emission (AE) and crack length. In this study, the characteristics of the smart patch was evaluated. Pure copper was used for this sensor because its good corrosion resistance, stable crack propagation and detectability of AE near yield point. Fatigue test was performed under the constant stress amplitude to evaluate the crack propagation behavior using the relationship between stress intensity factor and crack propagation rate. The obtained curve between crack length and number of fatigue cycles by these crack propagation behavior was in good agreement with experimental results. AE measurement after some fatigue tests was performed and AE was detected at the applied fatigue stress. These results demonstrated that number of fatigue cycles and the maximum stress could be measured by this fatigue sensor.

2007 ◽  
Vol 353-358 ◽  
pp. 2045-2048
Author(s):  
Shoichi Nambu ◽  
Manabu Enoki

A new sensing method called “smart stress memory patch”, which could estimate the maximum stress, the stress amplitude and the fatigue cyclic number simultaneously using Kaiser effect of Acoustic Emission (AE) and crack length of this patch, was developed. In this study, the crack growth characteristics of this patch was evaluated. Pure copper was used for this patch because its good corrosion resistance, stable crack propagation and so on. Two kinds of samples which were rolled and electrodeposited copper were prepared to investigate the effect of microstructure on crack growth behavior. Fatigue test was performed under constant stress amplitude to evaluate the crack growth behavior using the relationship between stress intensity factor range and crack propagation rate. The scattering in fatigue crack growth was also investigated to obtain the relationship between crack length and the fatigue cyclic number including two-sided 95% confidence interval. The effect of thickness and grain size on the scattering was discussed. Finally, good crack growth behavior was obtained and the fatigue cyclic number could be estimated by this patch.


2008 ◽  
Vol 22 (11) ◽  
pp. 1105-1110 ◽  
Author(s):  
Y. FUJINO ◽  
S. NAMBU ◽  
M. ENOKI

Recently, the structural health monitoring becomes increasingly great important to assure the ease and safety of our life, and it is required significantly to develop non-destructive evaluation for structures such as bridges and tunnels. Some sacrificed specimens have been developed to evaluate the fatigue damage of structures such as fatigue cycles and residual lifetime, but it can be applied only when the stress history is known beforehand. These fatigue sensors need no cable and can be used at low cost in contrast to strain gage. In previous study, a smart stress memory patch was developed as a new fatigue sensor. The patch can measure simultaneously the maximum stress, stress amplitude and the number of fatigue cycles by crack length measurement and Kaiser effect of Acoustic Emission (AE). The crack growth behavior under constant amplitude (CA) loading has been investigated, and AE behavior also has been evaluated only after CA loading. However, AE characteristics after variable amplitude (VA) loading in service are extremely important. Moreover, it is very important to control AE behavior of the smart patch in order to evaluate the applied stress using Kaiser effect. In this study, fatigue test with single overload was investigated to evaluate its influence. Moreover, effect of crack length and heat treatment on AE behavior was also investigated. Finally, AE behavior of the patch was evaluated after fatigue CA loading with overload or VA loading with log-normal distribution and overload.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


2019 ◽  
Vol 29 (9) ◽  
pp. 1882-1888 ◽  
Author(s):  
Wen-juan CHENG ◽  
Yong LIU ◽  
Da-peng ZHAO ◽  
Bin LIU ◽  
Yan-ni TAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document