Analysis of Mechanical Property of Crystal KDP and Simulation of Ultra-Precision Cutting Process in the Ductile Mode

2007 ◽  
Vol 329 ◽  
pp. 427-432 ◽  
Author(s):  
Ming Jun Chen ◽  
Jing He Wang ◽  
X.M. Chen ◽  
Ying Chun Liang

In order to study mechanical property with different crystal-plane and different crystal orientation of the crystal KDP, nano-indentation experiments are first done. The mechanical properties of crystal KDP, such as elastic modulus, yielding stress, are obtained from the analysis of the experimental curve. To obtatin the stress-strain curves of crystal KDP, by using the spherical tip can get characteristic of continuous strain, the spherical indentation experiments is proposed firstly and carried out. According to obtained parameters, A finite element cutting model of crystal KDP is established. The cutting process of crystal KDP is simulated by the model, and the influence of rake angle and depth of cut on chip and surface quality is studied. The theory shows that when the cutter’s rake angle is in the range of -40° to -45°, an perfect super-smooth KDP crystal surface will be obtained. Finaly, the experiments is carried out on special ultra-precision machine tool for crystal KDP by ourself devoloping. Experiment results show that when the cutter’s rake angle is about -45°, an super-smooth surface (rms: 6.521nm and Ra: 5.151nm )is obtained on the plane (001), and this experiment certified correctness of theory analysis.

2013 ◽  
Vol 7 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Hiroki Kiyota ◽  
◽  
Fumihiro Itoigawa ◽  
Shota Endo ◽  
Takashi Nakamura

A built-up edge (BUE) that is formed adjacent to a chamfered cutting edge is extruded along the cutting edge, if the appropriate chamfer geometry is selected. If a sharper BUE is stably extruded with high fluidity, notch wear at the depth-of-cut line and adhesion of the work material can be prevented. In this study, an analytical cutting model considering the BUE extrusion with a chamfered tool is proposed in order to optimize the chamfer preparation, i.e., chamfer angle and coefficient of friction between the chamfer face and the BUE, for the advantages of BUE extrusion. In this analysis, an empirical cutting model employing the slip-line field method and a BUE extrusion model using the slab method are coupled by static mechanics equilibrium. By coupling the two models, the shape of the BUE is uniquely determined. The calculated and experimental results in terms of actual rake angle and cutting force are roughly in agreement. The analytical results indicate that sharpness and the fluidity in the BUE extrusion can be simultaneously attained by preparing the tool with chamfer angle in which the material stagnation proceeds until the actual rake angle is equal to the rake angle of the tool.


2016 ◽  
Vol 686 ◽  
pp. 7-12 ◽  
Author(s):  
Angelos P. Markopoulos ◽  
Nikolaos E. Karkalos ◽  
Dimitrios E. Manolakos

A simulation of the material removal by a single abrasive grain in nanometric grinding is presented in this paper. Molecular Dynamics method is used for modeling the diamond grain and the copper workpiece. The Morse potential function is used to simulate the interactions between the atoms involved in the procedure. The abrasive grain follows a trajectory with decreasing depth of cut within the workpiece to simulate the interaction of the grain with the workpiece. The influence of the grain shape, being either square or rectangular, and of the orientation of the grain, where the grain has rake angle 10o, -10o and-20o, are studied. From the analysis it is apparent that both grain morphology and orientation play a significant role on chip formation, grinding forces and temperatures. With the appropriate modifications, the proposed model can be used for the simulation of various nanomachining processes and operations, in which continuum mechanics cannot be applied or experimental techniques are subjected to limitations.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Ichiro Moriwaki ◽  
Tsukasa Osafune ◽  
Morimasa Nakamura ◽  
Masami Funamoto ◽  
Koichiro Uriu ◽  
...  

Gear skiving is a technique proposed a long time ago for cutting internal gears at high productivity. Until recently, many problems have prevented its widespread use. With current technological breakthroughs, however, skiving is drawing attention again. The present paper describes cutting tool parameters, which could be vital for the optimum design of skiving cutters. Cutting tool parameters include depth of cut, rake angle, and clearance angle at each point on a cutting edge. They continuously change with progress in the cutting process. The parameters are defined on the basis of an oblique cutting model, which is a three-dimensional extension of an orthogonal cutting model. The example calculations in this study revealed the following features: Although rake angles almost always remain negative, clearance angles remain positive. At the points where clearance angles are large, depths of cut are large, but rake angles are small (i.e., largely negative). The decrease in shaft angle between the cutter and working blank axes increases depths of cut and clearance angles, while reducing rake angles (i.e., yields largely negative rake angles). Meanwhile, the increase in cutter tool face offset; i.e., the axial position of a tool face measured from a reference point on the conjugate pinion, narrows the area where depths of cut and clearance angles are small, but rake angles become largely negative. These parameters could be useful for evaluating tool cutting efficiencies in internal gear skiving.


2012 ◽  
Vol 430-432 ◽  
pp. 715-718 ◽  
Author(s):  
Xue Hui Wang ◽  
Ping Zhou ◽  
Ya Wen Liu ◽  
Ming Jun Dai

The tool geometric angle and cutting parameters have a significant influence on the titanium alloy milling process by the usage of solid carbide end mills.The physical simulation method was applied to predict the cutting force and temperature by using two comparative sets of simulation data such as the different tool gemetric angle as tool rake angle, helix angle and different cutting parameters such as spindle speed, axial depth of cut, radial depth of cut. Thus are the commonly used methods to simulate and predict the cutting process before the actual production, which can reduce product cost and time.


2009 ◽  
Vol 626-627 ◽  
pp. 663-668
Author(s):  
Jun Li Li ◽  
Ming Chen ◽  
Bin Rong

The nickel-based superalloy GH80A has been widely used in kinds of aeronautical key structures because of its high yield stress and anti-fatigue performance at high temperature. However, it is also a typical difficult-to-cut material. In order to improve cutting process, kinds of methods have been applied to study cutting process including experimental approach and finite element method (FEM). In this paper, a comparison of chip formation is carried out between traditional Johnson-Cook (JC) model and Isotropic model. Besides, effects of tool rake angle and friction coefficient on chip formation are investigated by Isotropic model. FEM predicated results such as stress and cutting temperature are also analyzed. Relative turning tests are performed and comparison of chip morphology between FEM and experiment is carried out.


2008 ◽  
Vol 208 (1-3) ◽  
pp. 400-408 ◽  
Author(s):  
A. Pramanik ◽  
K.S. Neo ◽  
M. Rahman ◽  
X.P. Li ◽  
M. Sawa ◽  
...  

1998 ◽  
Vol 120 (2) ◽  
pp. 230-235 ◽  
Author(s):  
E. R. Marsh ◽  
D. S. Yantek ◽  
M. A. Davies ◽  
D. E. Gilsinn

This paper considers chatter in diamond turning of aluminum. A nonlinear chip area model is developed for use with the classic single degree of freedom cutting model. The chip area model is formulated as a function of the change in depth of cut between consecutive passes. This function is shown to be highly dependent on the quadratic term when turning the diameter of cylindrical workpieces with round-nosed diamond tools. The cutting model is further extended to include an impact disturbance to the cutting process. The recent research in ultra-precision machining is incorporated to properly account for the rise in specific cutting energy at extremely light depths of cut. Simulations of the resulting tool displacement show close agreement with experimental measurements.


2020 ◽  
Vol 14 (2) ◽  
pp. 253-259
Author(s):  
Abdallah Abdelkawy ◽  
Masahiko Yoshino ◽  
Yuki Nakagawa ◽  
◽  

The effects of negative rake angles on the ductile mode cutting of soda glass and sapphire were studied. In addition, the machining mechanism was studied using a groove-cutting model based on the orthogonal cutting theory. It was found that the specific cutting forces in ductile mode cutting increase on both the soda glass specimen and on the sapphire specimen when the rake angle of the tool becomes negative. The difference between the experimental data and theoretical data of the specific cutting forces becomes large when the tool has a high rake angle on the negative side. This is attributed to effects of the roundness of the edge, the effects of the roundness of the nose, and the plowing mechanism, which causes plastic flow of the work material to both sides of the groove. The specific cutting force of sapphire depends on the cutting direction against the crystal orientation. The specific cutting force of sapphire depends on the cutting direction in terms of the crystal orientation. The anisotropy of the cutting force of sapphire also depends on the rake angle of the tool.


2011 ◽  
Vol 496 ◽  
pp. 211-216
Author(s):  
Tahsin Tecelli Öpöz ◽  
Xun Chen

Cutting processes in machining involves the elastic and plastic formation where a layer of material is removed by a cutting tool to be removed from the workpiece in forms of various types of small chips. In this paper, a series of finite element simulations of 2D chip formation with various parameters are presented. Different types of chip shapes, such as continuous, discontinuous and serrated shape, are simulated under different conditions. A damage evolution technique based on fracture energy dissipation during material damage progression is used to demonstrate the influences on chip formation. It is concluded that the fracture energy in damage evolution is a crucial factor for the determination of chip shape. Further the influence of depth of cut and rake angle are considered in the simulations.


Sign in / Sign up

Export Citation Format

Share Document