scholarly journals Effect of Tool Rake Angle and Crystal Orientation on Ductile Mode Cutting of Hard/Brittle Materials

2020 ◽  
Vol 14 (2) ◽  
pp. 253-259
Author(s):  
Abdallah Abdelkawy ◽  
Masahiko Yoshino ◽  
Yuki Nakagawa ◽  
◽  

The effects of negative rake angles on the ductile mode cutting of soda glass and sapphire were studied. In addition, the machining mechanism was studied using a groove-cutting model based on the orthogonal cutting theory. It was found that the specific cutting forces in ductile mode cutting increase on both the soda glass specimen and on the sapphire specimen when the rake angle of the tool becomes negative. The difference between the experimental data and theoretical data of the specific cutting forces becomes large when the tool has a high rake angle on the negative side. This is attributed to effects of the roundness of the edge, the effects of the roundness of the nose, and the plowing mechanism, which causes plastic flow of the work material to both sides of the groove. The specific cutting force of sapphire depends on the cutting direction against the crystal orientation. The specific cutting force of sapphire depends on the cutting direction in terms of the crystal orientation. The anisotropy of the cutting force of sapphire also depends on the rake angle of the tool.

2015 ◽  
Vol 799-800 ◽  
pp. 366-371 ◽  
Author(s):  
Deuanphan Chanthana ◽  
Somkiat Tangjitsitcharoen

The roundness is one of the most important criteria to accept the mechanical parts in the CNC turning process. The relations of the roundness, the cutting conditions and the cutting forces in CNC turning is hence studied in this research. The dynamometer is installed on the turret of the CNC turning machine to measure the in-process cutting force signals. The cutting parameters are investigated to analyze the effects of them on the roundness which are the cutting speed, the feed rate, the depth of cut, the tool nose radius and the rake angle. The experimentally obtained results showed that the better roundness is obtained with an increase in cutting speed, tool nose radius and rake angle. The relation between the cutting parameters and the roundness can be explained by the in-process cutting forces. It is understood that the roundness can be monitored by using the in-process cutting forces.


2013 ◽  
Vol 7 (3) ◽  
pp. 278-284 ◽  
Author(s):  
Kunitaka Kuriyama ◽  
◽  
Masahiko Fukuta ◽  
Katsuhiko Sekiya ◽  
Keiji Yamada ◽  
...  

It is strongly wished that hard and brittle materials could be used in a wide variety of fields because of their great material characteristics. For now, however, minute profiling or high-efficiency cutting of these materials has not yet been put into practice due to their hardness. At the same time, there have been numerous reports available on ductile mode cutting for hard and brittle materials in response to the increasing demand. Very smoothly finished surfaces can reportedly be generated through the work of a material removal mechanism similar to plastic deformation, done by microminiaturizing cutting units with the sharp cutting edges of tools. Because of the extremely narrow ductile mode regions, however, forced cutting processing, which includes cutting work, demands extremely high motion performance or rigidity of machine tools, and this makes it difficult to realize stable ductile mode cutting. On the other hand, pressure cutting processing similar to polishing is known to be capable of producing extremely smooth finished surfaces on hard and brittle materials; this suggests that we could realize stable ductile mode cutting that will always create the same depths of cut by controlling the insertion forces on the tools. In this paper, in order to realize stable ductile mode cutting, we have devised and prototyped a constant pressure cutting device which can regulate cutting forces by regulating supply pressure with air static pressure bearings. We have investigated the relationships between the pressure supplied in the cutting direction and the cutting forces in order to get static pressure characteristics of the prototype device. We have also carried out experiments to cut hard and brittle materials with the prototype constant pressure cutting device mounted on the tool post of an ultraprecision machine tool to prove the effectiveness of the constant pressure cutting device for the ductile mode cutting of hard and brittle materials.


2010 ◽  
Vol 97-101 ◽  
pp. 1961-1964 ◽  
Author(s):  
Wei Guo Wu ◽  
Gui Cheng Wang ◽  
Chun Gen Shen

In this work, the prediction and analysis of cutting forces in precision turning operations is presented. The model of cutting forces is based on the oblique cutting force model which was rebuilt by two coordinate conversions from the orthogonal cutting model. Then the cutting field in precision turning was divided into two fields which are characterized as curve change and linear change on cutter edge and they were modeled respectively. Cutting field of cutter nose was modeled by differential method and its cutting force distribution is predicted by the proposed method. The predicted results for the cutting forces are in agreement with the experimental results under a variety of operation variables, including changes in the depths of cut and in the feedrate.


2013 ◽  
Vol 7 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Takashi Matsumura ◽  
◽  
Motohiro Shimada ◽  
Kazunari Teramoto ◽  
Eiji Usui ◽  
...  

A force model for milling with cutter axis inclination is presented. The model predicts the cutting force and chip flow direction. Three-dimensional chip flow is interpreted as a piling up of the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities in the inclined coordinate system with a ball end mill. The chip flow direction is determined to minimize the cutting energy consumed into the shear energy on the shear plane and the friction energy on the rake face. Then, the cutting force is predicted in the chip flow determined model. The presented cutting model is verified by comparing the predicted cutting forces to the measured forces in the actual cutting tests. As an advantage of the presented force model, the change in the chip flow direction during one rotation of the cutter is also predicted in the simulation for the cutter axis inclination and the cutting parameters. In the simulation, the effect of cutter axis inclination on the cutting process is discussed in terms of the tool wear and surface finish. The cutting force charts, in which the maximum values of the positive and the negative cutting forces are simulated for the inclination angles, are presented to review the cutter axis inclination. The applicable cutter axis inclination can be determined by taking into account the thresholds of the cutting force components.


2011 ◽  
Vol 496 ◽  
pp. 156-161
Author(s):  
Worapong Sawangsri ◽  
K. Cheng

In this paper, the existing models micro/nanometric cutting mechanics and physics are critically reviewed including ductile mode cutting models, cutting forces models and surface generation models. A comparison study is carried out each aspect of the three groups of models being considered. The combination and formulation of these models into one integrated model is to be performed in order to accrue benefits arising from the advantages of each model. This paper concludes with further discussion on the concepts for the improved modelling and possible development of new models.


2010 ◽  
Vol 126-128 ◽  
pp. 246-251 ◽  
Author(s):  
Hiroo Shizuka ◽  
Koichi Okuda ◽  
Masayuki Nunobiki ◽  
Wei Li ◽  
Takanobu Inaoka

This paper describes the cutting characteristics of lithium niobate, which is used for surface acoustic wave type micropumps, regarding the formation of micro grooves by direct cutting. Since lithium niobate is a brittle material with a strong crystal orientation dependency, significant differences were observed in the characteristics of the finished surface according to different directions of cutting. The ductile mode cutting of lithium niobate was found to be feasible with cutting depths of approx. 5 μm or less. Also, results of the study show the feasibility of the formation of minute grooves through the cutting of lithium niobate, using milling with an end mill.


BioResources ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. 2883-2894 ◽  
Author(s):  
Andrew Naylor ◽  
Phil Hackney ◽  
Noel Perera ◽  
Emil Clahr

In this study a number of work-piece variations were evaluated whilst limiting the cutting conditions. Eight wood species controlled at four moisture levels were machined along and across the wood grain. The tool used during cutting was designed to resemble a rip saw tooth with zero rake angle and narrow edge width. Each work-piece variation machined in the cutting tests was subjected to mechanical tests that evaluated bending properties across the grain and shear properties along the grain. The regression model establishes a relationship between the bending properties for cutting forces across the grain, as well as shear properties for cutting forces along the grain. F and R² values show that the elastic properties of the wood in bending and shear have less influence on the cutting forces when compared to the strength and toughness. Additionally, density is seen to have less influence on the cutting force along the grain. This is explained by the tool passing through an unquantifiable proportion of early and latewood fibers from the annual growth rings. Cutting across the grain, the tool is forced to machine through approximately the same proportion of earlywood and latewood fibres.


2007 ◽  
Vol 329 ◽  
pp. 427-432 ◽  
Author(s):  
Ming Jun Chen ◽  
Jing He Wang ◽  
X.M. Chen ◽  
Ying Chun Liang

In order to study mechanical property with different crystal-plane and different crystal orientation of the crystal KDP, nano-indentation experiments are first done. The mechanical properties of crystal KDP, such as elastic modulus, yielding stress, are obtained from the analysis of the experimental curve. To obtatin the stress-strain curves of crystal KDP, by using the spherical tip can get characteristic of continuous strain, the spherical indentation experiments is proposed firstly and carried out. According to obtained parameters, A finite element cutting model of crystal KDP is established. The cutting process of crystal KDP is simulated by the model, and the influence of rake angle and depth of cut on chip and surface quality is studied. The theory shows that when the cutter’s rake angle is in the range of -40° to -45°, an perfect super-smooth KDP crystal surface will be obtained. Finaly, the experiments is carried out on special ultra-precision machine tool for crystal KDP by ourself devoloping. Experiment results show that when the cutter’s rake angle is about -45°, an super-smooth surface (rms: 6.521nm and Ra: 5.151nm )is obtained on the plane (001), and this experiment certified correctness of theory analysis.


2015 ◽  
Vol 9 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Shoichi Tamura ◽  
◽  
Takashi Matsumura ◽  

An analytical forcemodel is applied in order to predict the cutting force in drilling of unidirectional Carbon Fiber Reinforced Plastics (CFRP). Because a threedimensional chip flow is interpreted as a piling up of the orthogonal cuttings, the shear angle, the shear stress on the shear plane and the friction angle in the orthogonal cutting are obtained in the cutting tests. Because the chip thickness and the cutting force of CFRP depend on the cutting direction for the fiber orientation, the orthogonal cutting data are associated with the relative angle of the cutting direction with respect to the fiber orientation. The cutting forces in drilling are predicted using the orthogonal cutting data. The force model considering the fiber orientation is verified in comparison of the predicted cutting forces and the measured ones.


Sign in / Sign up

Export Citation Format

Share Document