A FEM and Experimental Study of Chip Formation in Orthogonal Cutting of Superalloy GH80A

2009 ◽  
Vol 626-627 ◽  
pp. 663-668
Author(s):  
Jun Li Li ◽  
Ming Chen ◽  
Bin Rong

The nickel-based superalloy GH80A has been widely used in kinds of aeronautical key structures because of its high yield stress and anti-fatigue performance at high temperature. However, it is also a typical difficult-to-cut material. In order to improve cutting process, kinds of methods have been applied to study cutting process including experimental approach and finite element method (FEM). In this paper, a comparison of chip formation is carried out between traditional Johnson-Cook (JC) model and Isotropic model. Besides, effects of tool rake angle and friction coefficient on chip formation are investigated by Isotropic model. FEM predicated results such as stress and cutting temperature are also analyzed. Relative turning tests are performed and comparison of chip morphology between FEM and experiment is carried out.

2008 ◽  
Vol 375-376 ◽  
pp. 26-30
Author(s):  
Kai Xue ◽  
Xiang Ming Xu ◽  
Gang Liu ◽  
Ming Chen

The chip formation and morphology are definitely affected by tool geometry and cutting parameters such as cutting speed, feed rate, and depth of cutting. An experiment investigation was presented to study the influence of tool geometry on chip morphology, and to clarify the effect of different cutting parameters on chip deformation in orthogonal turning the wheel steel. The result obtained in this study showed that tool geometry affected the chip morphology significantly; cutting speed was the most contributive factor in forming saw-tooth chip.


2011 ◽  
Vol 223 ◽  
pp. 3-11 ◽  
Author(s):  
François Ducobu ◽  
Edouard Rivière-Lorphèvre ◽  
Enrico Filippi

The foundations of micro-milling are similar to macro-milling but the phenomena it involves are not a simple scaling-down of macro-cutting. The importance of the minimum chip thickness is one of the significant differences between the two processes. The lagrangian FEM model presented in this paper aims to study the depth of cut influence on chip formation of Ti6Al4V in orthogonal cutting. It is firstly used to compare the modelled saw-toothed macro-chip morphology and cutting forces to experimental cutting results from literature. Then a minimum chip thickness prediction is performed by decreasing the depth of cut. Finally this study is the opportunity to highlight the specific features of micro-cutting reported in literature, such as the effective negative rake angle of the tool or the size effect. The model presented brings therefore a numerical contribution to the comprehension of these phenomena.


2021 ◽  
Author(s):  
Nithyaraaj Kugalur-Palanisamy ◽  
Edouard Rivière-Lorphèvre ◽  
Pedro-José Arrazola ◽  
François Ducobu

The highly used Ti6Al4V alloy is a well know hard-to-machine material. The modelling of orthogonal cutting process of Ti6Al4V attract the interest of many researchers as it often generates serrated chips. The purpose of this paper is to show the significant influence of cutting speed on chip formation during orthogonal cutting of Ti6Al4V along with different material constitutive models. Finite element analyses for chip formation are conducted for different cutting speeds and are investigated with well-known Johnson-Cook constitutive model, a modified Johnson–Cook model known as Hyperbolic Tangent (TANH) model that emphasizes the strain softening behavior and modified Johnson-Cook constitutive model that consider temperature dependent strain hardening factor. A 2D Lagrangian finite element model is adopted for the simulation of the orthogonal cutting process and the results from the simulations such as calculated forces, chip morphologies are analyzed and are compared with the experimental results to highlight the differences. The results analysis shows that, the temperature in the secondary deformation zone is directly proportional to the cutting speed.


2004 ◽  
Vol 471-472 ◽  
pp. 16-20 ◽  
Author(s):  
Gang Fang ◽  
P. Zeng

The tool plays an important role in cutting process. The aim of this paper is to investigate the effect of tool geometrical parameters on the chip formation and cutting force with orthogonal cutting models. The large deformation Rigid-visco-plastic FEM program DEFORM-2DTM is used, and thermo-mechanical coupling effect are considered. The chip separation from workpiece is implemented by remeshing. Contrary to traditional cutting simulation, the workpiece is moved and the tool is fixed, which is consistent with actual process. The effects of tool rake angle on the chip geometry and cutting force are analyzed. The simulated cutting forces are compared with results in other references. The research results are a help to cutting process study and cutting tool design.


2011 ◽  
Vol 338 ◽  
pp. 209-213
Author(s):  
Jiang Xin Zhu ◽  
Jian Xin Deng

This paper presents a rigid-plastic finite element method for orthogonal cutting process by adopting Lagrange method. The rigid-plastic FEM analysis model is established and the rigid-plastic FEM analysis toolkit was developed. Meanwhile, two relevant key problems are discussed systematically, including the rule of chip-workpiece separation and the criterion of tool-chip separation. At last, a simulation example of planing an aluminium alloy (ZL-301) workpiece was conducted. The effects of the cutting stroke, the tool rake angle and the friction coefficient on chip were observed. The numerical simulation results have a good agreement with their experimental ones. It is indicated that the presented FEM model and algorithm are efficient and correct.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2009 ◽  
Vol 407-408 ◽  
pp. 420-423
Author(s):  
He Ping Wang ◽  
Xue Ping Zhang

An explicit dynamic coupled thermal-mechanical Arbitrary Lagrangian Eulerian (ALE) model was established to simulate orthogonal cutting AISI 52100 bearing steel, and its temperature and stress distribution. Based on ABAQUS, The ALE approach effectively simulates plastic flow around round edge of the cutting tool without employing chip separation criteria. The calculation results reveal that cutting speed and cutting depth have great impact on chip morphology, stress and temperature distribution in the finished surface and subsurface, the predicted temperature agrees well with experiment data obtained under the similar cutting conditions as well as the change in chip morphology from continuous to sawtooth as the cutting speed increases.


2013 ◽  
Vol 690-693 ◽  
pp. 2030-2035
Author(s):  
Shu Bao Yang ◽  
Hong Chao Ni ◽  
Guo Hui Zhu

Ti6Al4V alloy is widely used in the aircraft industry, marine and the commercial applications due to its excellent comprehensive properties. However, its poor machinability prevents it from application widely, and the rapid tool wear is one of the key factors. The FEM models of cutting titanium alloy are established. The effect of tool wear on chip morphology, cutting temperature and cutting force are studied. The simulation results show that: the cutting force and cutting temperature will rise with the increase of tool wear. Furthermore, the degree of chip deformation will improve, but the frequency of serrated chip tooth occurred will decrease.


2012 ◽  
Vol 500 ◽  
pp. 146-151 ◽  
Author(s):  
Ning Hou ◽  
Li Zhou ◽  
Shu Tao Huang ◽  
Li Fu Xu

In this paper, a finite element method was used to dynamically simulate the process of the edge defects formation during orthogonal cutting SiCp/Al composites. The influence of the cutting speed, cutting depth and rake angle of the PCD insert on the size of the edge defects have been investigated by using scanning electron. According to the simulated results, it can be provided that the cutting layer material has an effect on transfer stress and hinder the chip formation in the critical transition stage, and the critical transition point and distance are defined in this stage. The negative shear phenomenon is found when the chip transit to the edge defects in the flexure deformation stage, so the process of the chip formation is the basis of the edge defects formation. In addition, the relationship between the nucleation and propagation direction of the crack and the variation of the edge defect shape on the workpiece was investigated by theory, and it found that the negative shear angle formation is the primary cause of the edge defect formation. A mixed mode crack is found in the crack propagation stage. The sizes of edge defects were measured by the experiment and simulation, and the edge defect size decrease with the increasing of tool rake angle, while increase with increasing cutting depth and cutting speed.


2012 ◽  
Vol 504-506 ◽  
pp. 1329-1334 ◽  
Author(s):  
Moises Batista ◽  
Madalina Calamaz ◽  
Franck Girot ◽  
Jorge Salguero ◽  
Mariano Marcos

The forces involved in a cutting process are related, for example, with the power consumption, with the final quality of the workpiece and with the chip geometry obtained, since these forces determine the compression experimented by the chip and therefore its final geometry. The orthogonal cutting process assisted with a High Speed Filmation (HSF) permit obtains a digital filmation of the process with high magnification. This filmation permits to obtain a measurement of the longitudinal changes produced in the chip. This deforms are related with the Shrinkage Factor, ζ. And in this case the Stabler hypothesis is enabled, by that using the shear angle and the rake angle is possible obtain a value of the Shrinkage Factor in a different conditions.


Sign in / Sign up

Export Citation Format

Share Document