Research on Creep Properties of Sn2.5Ag0.7CuXRE Lead-Free Soldered Joints for Surface Mount Technology

2007 ◽  
Vol 353-358 ◽  
pp. 2912-2915 ◽  
Author(s):  
Ke Ke Zhang ◽  
Yao Li Wang ◽  
Yan Li Fan ◽  
Jie Yiang ◽  
Yan Fu Yan ◽  
...  

Creep property of solder alloys is one of the important factors to effect the reliability of surface mount technology (SMT) soldered joints. The creep behavior and its rupture life of Sn2.5Ag0.7CuXRE lead-free soldered joints were separately investigated and predicted under constant temperature by a single shear lap creep specimen with a 1mm2 cross sectional area and finite element method (FEM) in this paper. Results show that the creep property of Sn2.5Ag0.7Cu0.1RE is superior to that of the commercial employed lead-free solder Sn3.8Ag0.7Cu and the creep rupture life of its soldered joints is 8.4 times more than that of Sn2.5Ag0.7Cu solder. The creep rupture life of Sn2.5Ag0.7CuXRE lead-free soldered joints indirectly predicted by FEM is better in accord with that of actual testing results, which are important to design the reliability of lead-free soldered joints for SMT.

2010 ◽  
Vol 650 ◽  
pp. 91-96 ◽  
Author(s):  
Ke Ke Zhang ◽  
Yao Li Wang ◽  
Yan Li Fan ◽  
Guo Ji Zhao ◽  
Yan Fu Yan ◽  
...  

The effects of Ni on the properties of the Sn-2.5Ag-0.7Cu-0.1Re solder alloy and its creep properties of solder joints are researched. The results show that with adding 0.05wt% Ni in the Sn-2.5Ag-0.7Cu-0.1Re solder alloy, the elongation can be sharply improved without decreasing its tensile strength and it is 1.4 times higher than that of the commercial Sn-3.8Ag-0.7Cu solder alloy. Accordingly the creep rupture life of Sn-2.5Ag-0.7Cu-0.1Re-0.05Ni solder joints is the longest, which is 13.3 times longer than that of Sn-2.5Ag-0.7Cu-0.1Re and is also longer than that of the commercial Sn-3.8Ag-0.7Cu solder alloy. In the same environmental conditions, the creep rupture life of Sn-2.5Ag-0.7Cu-0.1Re-0.05Ni solder joints can sharply decrease with increasing the temperature and stress.


Author(s):  
Kanji Takagi ◽  
Masaki Wakabayashi ◽  
Junichi Inoue ◽  
Qiang Yu ◽  
Takahiro Akutsu

This paper proposes the high reliable design method for lead-free solder joint on metal substrate on chip component. First, the crack propagation analysis method for estimating rupture life of solder joint was constructed. And then, the effect of material properties of insulating layer on metal substrate and solder joint shape for rupture life of solder joint was evaluated using crack propagation analysis. As the result, the relation between young’s modulus of insulating layer and rupture life was indicated quantitatively. Also, the relation of filet length for rupture life of solder joint was evaluated. Secondary, evaluation method of heat dissipation for metal substrate was proposed. Because thermal conductivity of insulating layer affects temperature rise of heating device. And, the relation between thermal conductivity of insulating layer and temperature rise of heating device was indicated.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000201-000207 ◽  
Author(s):  
Youngtak Lee ◽  
Doug Link

Abstract Due to rapid growth of the microelectronics industry, packaged devices with small form factors, low costs, high power performance, and increased efficiency have become of high demand in the market. To realize the current market development trend, flip chip interconnection and System-in-Package (SiP) are some of the promising packaging solutions developed. However, a surprising amount of surface mount technology (SMT) defects are associated with the use of lead-free solder paste and methods by which the paste is applied. Two such defects are solder extrusion and tombstoning. Considerable amount of defects associated with solder overflow are found on chip-on-flip-chip (COFC) SiP in hearing aids. Through the use of design of experiments (DOE), lead-free solder defect causes on hearing aids application can be better understood and subsequently reduced or eliminated. This paper will examine the failure modes of solder extrusion and tombstoning that occurred when two different types of lead-free solders, Sn-Ag-Cu (SAC) and BiAgX were used within a SiP for attachment of surface mount devices (SMD) chip components for hearing aid applications. The practical application and analysis of lead-free solder for hearing aids will include the comprehensive failure analysis of the SMD components and compare the modeling and analysis of the two different solder types through the DOE process.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000111-000116
Author(s):  
Youngtak Lee ◽  
Doug Link

Abstract Due to rapid growth of the microelectronics industry, packaged devices with small form factors, low costs, high power performance, and increased efficiency have become of high demand in the market. To realize the current market development trend, flip chip interconnection and System-in-Package (SiP) are some of the promising packaging solutions developed. However, a surprising amount of surface mount technology (SMT) defects are associated with the use of lead-free solder paste and methods by which the paste is applied. Two such defects are solder extrusion and tombstoning. Through the use of design of experiments (DOE), lead-free solder defect causes can be better understood and subsequently reduced or eliminated. This paper will examine the failure modes of solder extrusion and tombstoning that occurred when two different types of lead-free solders, Sn-Ag-Cu (SAC) and BiAgX were used within a SiP for attachment of surface mount devices (SMD) chip components. The systematic investigation will include the comprehensive failure analysis of the SMD components and compare the modeling and analysis of the two different solder types utilizing the design of experiments methods.


2011 ◽  
Vol 687 ◽  
pp. 39-43
Author(s):  
Yao Li Wang ◽  
Gai Hong Dong ◽  
Chen Yang Li ◽  
Zhi Wei Wu ◽  
Jing Sun

Creep property is one of the most important factors to affect the reliability of soldered joints. The effect of rare earth(RE) on the creep rupture life of Sn2.5Ag0.7Cu solder joints were investigated under constant temperature and stress using creep specimens with a 1mm2cross sectional area. The results show that adding tiny RE in Sn2.5Ag0.7Cu solder alloy can effectually affect the size and configuration of the intermetallic compound (IMC) of interfacial layer. The IMC of Sn2.5Ag0.7Cu interfacial layer is thinner and its thickness is homogeneous with adding 0.1% RE, and the creep rupture life of solder joints is longest, which is apparently superior to that of Sn2.5Ag0.7Cu and commercial used Sn3.8Ag0.7Cu solder alloy.


2016 ◽  
Vol 28 (2) ◽  
pp. 41-62 ◽  
Author(s):  
Chun Sean Lau ◽  
C.Y. Khor ◽  
D. Soares ◽  
J.C. Teixeira ◽  
M.Z. Abdullah

Purpose The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed. Design/methodology/approach Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process. Findings With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed. Practical implications This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process. Originality/value The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.


Sign in / Sign up

Export Citation Format

Share Document