Effect of RE on Creep Rupture Life of SnAgCu Solder Joints

2011 ◽  
Vol 687 ◽  
pp. 39-43
Author(s):  
Yao Li Wang ◽  
Gai Hong Dong ◽  
Chen Yang Li ◽  
Zhi Wei Wu ◽  
Jing Sun

Creep property is one of the most important factors to affect the reliability of soldered joints. The effect of rare earth(RE) on the creep rupture life of Sn2.5Ag0.7Cu solder joints were investigated under constant temperature and stress using creep specimens with a 1mm2cross sectional area. The results show that adding tiny RE in Sn2.5Ag0.7Cu solder alloy can effectually affect the size and configuration of the intermetallic compound (IMC) of interfacial layer. The IMC of Sn2.5Ag0.7Cu interfacial layer is thinner and its thickness is homogeneous with adding 0.1% RE, and the creep rupture life of solder joints is longest, which is apparently superior to that of Sn2.5Ag0.7Cu and commercial used Sn3.8Ag0.7Cu solder alloy.

2007 ◽  
Vol 353-358 ◽  
pp. 2912-2915 ◽  
Author(s):  
Ke Ke Zhang ◽  
Yao Li Wang ◽  
Yan Li Fan ◽  
Jie Yiang ◽  
Yan Fu Yan ◽  
...  

Creep property of solder alloys is one of the important factors to effect the reliability of surface mount technology (SMT) soldered joints. The creep behavior and its rupture life of Sn2.5Ag0.7CuXRE lead-free soldered joints were separately investigated and predicted under constant temperature by a single shear lap creep specimen with a 1mm2 cross sectional area and finite element method (FEM) in this paper. Results show that the creep property of Sn2.5Ag0.7Cu0.1RE is superior to that of the commercial employed lead-free solder Sn3.8Ag0.7Cu and the creep rupture life of its soldered joints is 8.4 times more than that of Sn2.5Ag0.7Cu solder. The creep rupture life of Sn2.5Ag0.7CuXRE lead-free soldered joints indirectly predicted by FEM is better in accord with that of actual testing results, which are important to design the reliability of lead-free soldered joints for SMT.


2010 ◽  
Vol 650 ◽  
pp. 91-96 ◽  
Author(s):  
Ke Ke Zhang ◽  
Yao Li Wang ◽  
Yan Li Fan ◽  
Guo Ji Zhao ◽  
Yan Fu Yan ◽  
...  

The effects of Ni on the properties of the Sn-2.5Ag-0.7Cu-0.1Re solder alloy and its creep properties of solder joints are researched. The results show that with adding 0.05wt% Ni in the Sn-2.5Ag-0.7Cu-0.1Re solder alloy, the elongation can be sharply improved without decreasing its tensile strength and it is 1.4 times higher than that of the commercial Sn-3.8Ag-0.7Cu solder alloy. Accordingly the creep rupture life of Sn-2.5Ag-0.7Cu-0.1Re-0.05Ni solder joints is the longest, which is 13.3 times longer than that of Sn-2.5Ag-0.7Cu-0.1Re and is also longer than that of the commercial Sn-3.8Ag-0.7Cu solder alloy. In the same environmental conditions, the creep rupture life of Sn-2.5Ag-0.7Cu-0.1Re-0.05Ni solder joints can sharply decrease with increasing the temperature and stress.


1990 ◽  
Vol 112 (3) ◽  
pp. 219-222 ◽  
Author(s):  
S. M. Heinrich ◽  
N. J. Nigro ◽  
A. F. Elkouh ◽  
P. S. Lee

In this paper dimensionless design curves relating fillet height and length to joint cross-sectional area are presented for surface-mount solder joints. Based on an analytical surface tension model, the advantage of these dimensionless curves is that they may be used for arbitrary values of solder density and surface tension. The range of applicability of previously developed approximate formulae for predicting joint dimensions is also investigated. A simple example problem is included to illustrate the use of both the design curves and the approximate formulae.


1990 ◽  
Vol 112 (2) ◽  
pp. 135-146 ◽  
Author(s):  
H. K. Charles ◽  
G. V. Clatterbaugh

An extensive finite element modeling and experimental testing program has been carried out to determine the most optimum design parameters for solder joints in surface mount applications. Although the analysis and testing (power cycling and thermal cycling) has been carried out for a variety of package styles, particular attention will be paid to the result for leadless ceramic chip carriers. This package is particularly useful in certain high performance military and commercial applications. Analysis and experimentation indicate that increased fatigue life under power cycling can be attained by fabricating solder joints with large fillets and low standoff heights. The large fillet geometry significantly reduces harmful stress concentrations while increasing the net cross-sectional area within the joint. Both factors tend to improve the fracture toughness of the joint. The temperature and frequency dependencies of solder joint fatigue life under power cycling testing is discussed. The observed frequency dependence can be minimized by eliminating harmful tensile strain components thus reducing harmful stress relaxation and tensile induced oxygen embrittlement of grain boundaries. Temperature cycling studies indicate joints with slightly higher standoffs and low fillet angles are more resistant to cyclic fatigue than pillar type joints which tend to focus shear strains at the interfaces. Solder joints can be tapered to improve overall reliability but, in most cases, tapering will provide only a small increase in fracture toughness of the joint through the elimination of stress concentrations. Additional fatigue life increases can be obtained only through an enlargement of the joint cross-sectional area. Aspects of the above results will be presented in detail along with design guidelines for creating high reliability solder joints for various application scenarios.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Hao Lu ◽  
Chun Yu ◽  
Peilin Li ◽  
Junmei Chen

The current density distribution in a line-to-bump structure as a function of cross-sectional area ratio of the electrical conductor was investigated, as well as the effects of current crowding on electromigration and interfacial reaction in lead-free solder joints. Finite element analysis shows that the crowding factor is directly proportional to the cross-sectional area ratio between Cu line and contact opening at the cathode side. Cu∕Sn‐3.0Ag‐0.5Cu∕Cu solder joints with Cu line in different widths were designed and tested under 1×103A∕cm2 at 60°C for 430h. The experiment results show that big voids induced by electromigration are only formed at the structure with a narrower line. Moreover, the growth of intermetallic compound layers, as well as dissolution of Cu at the cathode side, is accelerated by smaller current crowding, whereas impeded by a bigger one.


2010 ◽  
Vol 154-155 ◽  
pp. 87-90 ◽  
Author(s):  
Yao Li Wang ◽  
Ke Ke Zhang ◽  
Guo Ji Zhao ◽  
Li Juan Han

Effect of rare earth content on microstructure and interfacial reactions of low Ag content SnAgCu solder is researched by adopting the X-ray diffraction, JSM-5610LV scanning electronic microscope, energy spectrum analysis and JEM2100 ultrahigh resolution electron microscopy. The results show that proper quantities of rare earth (0.1%) can refine the eutectic microstructure of the solder alloy; and petal-like rare earth compound can be found in the solder alloy while the rare earth addition is 0.5%. The growing rate of the interfacial intermetallic compound can be reduced during the soldering with adding 0.1% rare earth in the Sn2.5Ag0.7Cu solder alloy.


2014 ◽  
Vol 597 ◽  
pp. 219-224 ◽  
Author(s):  
Liang Zhang ◽  
Ji-guang Han ◽  
Yong-huan Guo ◽  
Cheng-wen He

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 82
Author(s):  
Gokul Obulan Subramanian ◽  
Changheui Jang ◽  
Ji Ho Shin ◽  
Chaewon Jeong

The cast Fe-Ni-based austenitic heat-resistant alloys with 4.5 wt% Al and varying Ti content were developed for high-temperature application. With increase in Ti content, strength of model alloys increased gradually at 700 °C and 750 °C. At 750 °C, alloys with 35Ni–(2~4)Ti composition showed a significant increase in creep rupture life compared to 30Ni–1Ti alloy, attributed to the increase in γ’-Ni3(Al,Ti) precipitates due to higher Ni and Ti content. Among the 35Ni–(2~4)Ti alloys, increasing Ti content from 2 to 4 wt% gradually increased the creep rupture life in the as-cast condition. The creep rupture life was improved after solution annealing treatment, however, the beneficial effect of higher Ti content was not evident for 35Ni–(2~4)Ti alloys. After solution annealing, interdendritic phases were partially dissolved, but coarse B2-NiAl phases were formed. The size and amount of coarse B2-NiAl phases increased with Ti content. In the creep-tested specimens, creep void nucleation and crack propagation were observed along the coarse B2-NiAl phases, especially for high-Ti alloys. Therefore, the beneficial effect of the increase in γ’-Ni3(Al,Ti) precipitates for high-Ti alloys on creep property was limited due to the detrimental effect of the presence of coarse B2-NiAl phases.


2006 ◽  
Vol 519-521 ◽  
pp. 1175-1180
Author(s):  
Makoto Sugamata ◽  
Masayuki Genei ◽  
Masahiro Kubota ◽  
Junichi Kaneko

Creep and creep rupture tests were carried out for friction-stir-welded (FSW) joints of 5052 aluminum alloy plates at temperatures between 573 and 723 K. The results were compared with those of the base metal. 5052-O plates of 20 mm in thickness were joined by FSW and round bar creep specimens were machined out of the welded plates. Tensile tests were also conducted at RT, 623 and 723K for both FSW joints and base metal. The tensile strength of the joints was almost the same as that of the base metal at room and elevated temperatures. However, the FSW joints showed appreciably higher minimum creep rate and shorter rupture time than the base metal at all the tested temperatures and initial creep stresses. Creep rupture of the joints always occurred within the plastically stirred zone with lower contraction of cross-sectional area. Thus, FSW joints of 5052 alloy plates showed lower creep strength than the base metal.


Sign in / Sign up

Export Citation Format

Share Document