Design of Geometric Error Measuring System on a Miniaturized Machine Tool with Optics

2007 ◽  
Vol 364-366 ◽  
pp. 1215-1220 ◽  
Author(s):  
Wei Wang ◽  
Sung Hwan Kweon ◽  
Young Suk Kim ◽  
Seung Han Yang

Manufactured miniature parts conventional machine tools are substituted by mini-scale manufacturing system called miniaturized machine tool (mMT). However, calibration of mMT is extremely difficult due to its small dimensions. This paper presents a novel optical measuring system to measure integrated geometric errors namely a) three translation errors and b) three rotational errors. The squareness error between two moving axes was calculated by least-square method. These 7-DOF geometric errors were acquired simultaneously in one setup for each motion direction. The proposed measuring system consisted of two laser diodes, two beam splitters and three 2D position sensing detectors (PSDs). Configuration of this measuring system was proved by homogenous transformation matrix (HTM), and the relationship between PSD readings and geometric errors calculated by the algorithm were derived according to the configuration. Simulation were carried out to prove the validity of this algorithm. Sensitivity analysis based on mounting errors of system components is also presented in this paper. It is useful for further experiments in alignment of system components.

2006 ◽  
Vol 20 (25n27) ◽  
pp. 3739-3744 ◽  
Author(s):  
SUNG-HWAN KWEON ◽  
YU LIU ◽  
JAE-HA LEE ◽  
YOUNG-SUK KIM ◽  
SEUNG-HAN YANG

Recently, miniaturized machine tools (mMT) have become a promising micro/meso-mechanical manufacturing technique to overcome the material limitation and produce complex 3D meso-scale components with higher accuracy. To achieve sub-micron accuracy, geometric errors of a miniaturized machine tool should be identified and compensated. An optic multi-degree-of-freedom (DOF) measuring system, composed of one laser diode, two beam splitters and three position sensing detectors (PSDs), is proposed for simultaneous measurement of horizontal straightness, vertical straightness, pitch, yaw and roll errors along a moving axis of mMT. Homogeneous transformation matrix (HTM) is used to derive the relationship between the readings of PSDs and geometric errors, and an error estimation algorithm is presented to calculate the geometric errors. Simulation is carried out to prove the estimation accuracy of this algorithm. In theory, the measurement resolution of this proposed system can reach up to 0.03 μm and 0.06 arcsec for translational and rotational errors, respectively.


Author(s):  
Guoqiang Fu ◽  
Jianzhong Fu ◽  
Hongyao Shen ◽  
Xinhua Yao

This paper proposes a tool following function-based identification approach (TFFIA) for geometric errors of two rotary axes for one five-axis machine tool. It is comprehensive to identify all geometric errors of rotary errors. Firstly, synthetic error formulas of ballbar originate from the geometric error model of machine tools in order to consider the influences of 21 errors of three translational axes. It makes the approach more reasonable and precise. Secondly, the structures of three measurement patterns of TFFIA are described. Thirdly, in each pattern, errors of rotary axes affecting the accuracy of the sensitive direction are identified. As the result, the identification equations of all 20 errors coincide with the geometric properties of errors. Moreover, the impacts of setup errors of ballbar are eliminated with least square method to improve the precise of TFFIA. According to the structures of three patterns, only three installation of workpiece ball of ballbar are needed in the whole identification of two rotary axes to obtain the required ballbar readings. It greatly shortens the measurement time. Twenty geometric errors of two rotary axes are calculated with identification equations and ballbar readings. Finally, TFFIA is applied to a SmartCNC500 five-axis vertical machining center. The corresponding comparisons are proposed to verify the effectiveness and accuracy of TFFIA.


2014 ◽  
Vol 941-944 ◽  
pp. 2219-2223 ◽  
Author(s):  
Guo Juan Zhao ◽  
Lei Zhang ◽  
Shi Jun Ji ◽  
Xin Wang

In this paper, a new method is presented for the identification of machine tool component errors. Firstly, the Non-Uniform Rational B-spline (NURBS) is established to represent the geometric component errors. The individual geometric errors of the motion parts are measured by laser interferometer. Then, the volumetric error for a machine tool with three motion parts is modeled based on the screw theory. Finally, the simulations and experiments are conducted to confirm the validity of the proposed method.


2012 ◽  
Vol 499 ◽  
pp. 3-8
Author(s):  
Xin You Li ◽  
Wu Yi Chen

In order to reduce manufacturing cost, a methodology of accuracy synthesis for machine tool was recommended by combining both machining cost and Least Square method. Weighted coefficients representing the machining difficulty of manufacturing processes were introduced. 3PRS/UPS redundant parallel kinematic mechanism (3PRS/UPS PKM) was taken as an example, and its component tolerances were derived by the proposed method. Comparing with conventional method, the component tolerances were allocated reasonably. A further tolerance allocation for spherical and rotational joints was studied in detail. And hence, the producibility of component was improved and the manufacturing cost was reduced. The results showed that the proposed method was capable of producing tolerance allocations economically and accurately.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


Author(s):  
Jennifer Creamer ◽  
Patrick M. Sammons ◽  
Douglas A. Bristow ◽  
Robert G. Landers ◽  
Philip L. Freeman ◽  
...  

This paper presents a geometric error compensation method for large five-axis machine tools. Compared to smaller machine tools, the longer axis travels and bigger structures of a large machine tool make them more susceptible to complicated, position-dependent geometric errors. The compensation method presented in this paper uses tool tip measurements recorded throughout the axis space to construct an explicit model of a machine tool's geometric errors from which a corresponding set of compensation tables are constructed. The measurements are taken using a laser tracker, permitting rapid error data gathering at most locations in the axis space. Two position-dependent geometric error models are considered in this paper. The first model utilizes a six degree-of-freedom kinematic error description at each axis. The second model is motivated by the structure of table compensation solutions and describes geometric errors as small perturbations to the axis commands. The parameters of both models are identified from the measurement data using a maximum likelihood estimator. Compensation tables are generated by projecting the error model onto the compensation space created by the compensation tables available in the machine tool controller. The first model provides a more intuitive accounting of simple geometric errors than the second; however, it also increases the complexity of projecting the errors onto compensation tables. Experimental results on a commercial five-axis machine tool are presented and analyzed. Despite significant differences in the machine tool error descriptions, both methods produce similar results, within the repeatability of the machine tool. Reasons for this result are discussed. Analysis of the models and compensation tables reveals significant complicated, and unexpected kinematic behavior in the experimental machine tool. A particular strength of the proposed methodology is the simultaneous generation of a complete set of compensation tables that accurately captures complicated kinematic errors independent of whether they arise from expected and unexpected sources.


Author(s):  
Zihan Li ◽  
Wenlong Feng ◽  
Jianguo Yang ◽  
Yiqiao Huang

This article intends to provide an efficient modeling and compensation method for the synthetic geometric errors of large machine tools. Analytical and experimental examinations were carried out on a large gantry-type machine tool to study the spatial geometric error distribution within the machine workspace. The result shows that the position accuracy of the tool-tip is affected by all the translational axes synchronously, and the position error curve shape is non-linear and irregular. Moreover, the angular error combined with Abbe’s offset during the motion of a translational axis would cause Abbe’s error and generate significant influence on the spatial positioning accuracy. In order to identify the combined effect of the individual error component on the tool-tip position accuracy, a synthetic geometric error model is established for the gantry-type machine tool. Also, an automatic modeling algorithm is proposed to approximate the geometric error parameters based on moving least squares in combination with Chebyshev polynomials, and it could approximate the irregular geometric error curves with high-order continuity and consistency with a low-order basis function. Then, to implement real-time error compensation on large machine tools, an intelligent compensation system is developed based on the fast Ethernet data interaction technique and external machine origin shift, and experiment validations on the gantry-type machine tool showed that the position accuracy could be improved by 90% and the machining precision could be improved by 85% after error compensation.


2011 ◽  
Vol 80-81 ◽  
pp. 1345-1349
Author(s):  
Hao Yang ◽  
Lei Pei

The accuracy of edge detection determines the accuracy of actual dimension measurement,in order to improve the measuring accuracy, this paper proposes a fast algorithm of detecting the glass bottle dimension based on Zernike moments. Firstly, combines the traditional Zernike moment-based method with Otsu adaptive threshold algorithm and a new fast algorithm for edge detection is proposed. Then uses this fast algorithm to detect the edge of glass bottle with subpixel-level and uses the least square method to fit ellipses formed by the glass bottle mouth and bottom. Calibrated the system with standard gauge block and obtain the actual dimension at last. Experimental results show that the improved algorithm not only can make the edge detection reach the subpixel-level accuracy, but also can avoid the edge misidentification and inefficient causing by repeatedly manual adjustments to select the threshold value when detecting the edge. Making a rapid, accurate, non-contact measuring system becomes a reality.


Author(s):  
Baobao Qi ◽  
Qiang Cheng ◽  
Zhifeng Liu ◽  
Dongyang Sun

Abstract Machine tools usually cut two or more surfaces after the work piece clamped on work table. In order to improve the machining accuracy and optimize accuracy design, it is hoped that the geometric errors that influence the accuracy of machined surface prominently can be known beforehand, so the adjustment will be carried out with a definite objective rather than without any clue. Because the machining accuracy of each direction in 3-D space is different value, in this paper, machining accuracy failure mode was defined as the various combination of the machining accuracy of each direction according to whether it is up to the reserved objective value or not. A three-axis machine tool was selected as an example and there were 7 machining accuracy failure modes for it. Based on the generalized correlation analysis, the correlation relationships between 7 machining accuracy failure modes were analyzed, and the main failure modes that affect the machining accuracy of work piece to be machined were identified. For each machining accuracy failure mode, key geometric error that had major influence on it was identified based on sensitivity analysis. Finally, four stepped work pieces were milled by a 3-axis machine tool to illustrate the analytical method proposed in this study.


Sign in / Sign up

Export Citation Format

Share Document