Experimental Research on Concrete Filled Thin-Walled Steel Tube Long Columns

2008 ◽  
Vol 400-402 ◽  
pp. 551-557 ◽  
Author(s):  
Bao Zhu Cao ◽  
Yao Chun Zhang ◽  
Yue Ming Zhao

Experimental research on square and octagonal concrete filled thin-walled steel tube long columns of 6 specimens in axial compression and 8 specimens in eccentric compression is undertaken. The relationship of global buckling bearing capacity of the columns and local buckling of the steel tubes is obtained. The test indicates that local buckling occurs in steel tube of each column before it reaches ultimate capacity, and has little effect on global buckling performance. The ultimate load decreases obviously with the increase of slender ratio and eccentricity. The ductility of columns increases with the increase of steel ratio in composite sections. Composite beam element of ANSYS is adopted in the finite element analysis. The theoretical results are agreed well with test..

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Hetao Hou ◽  
Su Ma ◽  
Bing Qu ◽  
Yanhong Liang ◽  
Yanjun Jin ◽  
...  

One steel grid and five thin-walled concrete-filled steel tubes (CTST) used as the supports of tunnel were tested in site for investigating the mechanical behavior. The mechanical influences of thickness, node form, and concrete on CTST were gained and compared with the impacts on steel grid. It is indicated that high antideformation capacity of CTST improved the stability of surrounding rock in short time. The cementitious grouted sleeve connection exhibited superior flexibility when CTST was erected and built. Although the deformation of rock and soil in the tunnel was increasing, good compression resistance was observed by CTST with the new connection type. It was also seen that vault, tube foot, and connections were with larger absolute strain values. The finite element analysis (FEA) was carried out using ABAQUS program. The results were validated by comparison with experimental results. The FE model could be referred by similar projects.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


2013 ◽  
Vol 694-697 ◽  
pp. 767-770
Author(s):  
Jing Shu Wang ◽  
Ming Chi Feng

As the thermal deformation significantly impacts the accuracy of precision positioning stage, it is necessary to realize the thermal error. The thermal deformation of the positioning stage is simulated by the finite element analysis. The relationship between the temperature variation and thermal error is fitted third-order polynomial function whose parameters are determined by genetic algorithm neural network (GANN). The operators of the GANN are optimized through a parametric study. The results show that the model can describe the relationship between the temperature and thermal deformation well.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Van Binh Phung ◽  
Anh Tuan Nguyen ◽  
Hoang Minh Dang ◽  
Thanh-Phong Dao ◽  
V. N. Duc

The present paper analyzes the vibration issue of thin-walled beams under combined initial axial load and end moment in two cases with different boundary conditions, specifically the simply supported-end and the laterally fixed-end boundary conditions. The analytical expressions for the first natural frequencies of thin-walled beams were derived by two methods that are a method based on the existence of the roots theorem of differential equation systems and the Rayleigh method. In particular, the stability boundary of a beam can be determined directly from its first natural frequency expression. The analytical results are in good agreement with those from the finite element analysis software ANSYS Mechanical APDL. The research results obtained here are useful for those creating tooth blade designs of innovative frame saw machines.


Author(s):  
Weimin Cui ◽  
Wei Guo ◽  
Zhongchao Sun ◽  
Tianxiang Yu

In order to analyze the reason of failure and improve the reliability of the idler shaft, this paper studies the reliability and sensitivity for the idler shaft based on Kriging model and Variance Methods respectively. The finite element analysis (FEA) of idler shaft is studied in ABAQUS firstly. Then, combining the performance function and various random variables, the Kriging model of idler shaft is established and verified. Based on Kriging model which has been established, the relationship between random variables and the response value is studied, and the function reliability is calculated which explains why the failure of the idler shaft occurred frequently in service. Finally, the variance-based sensitivity method is used for sensitivity analysis of influence factors, the result shows that the reliability of idler shaft is sensitive to the inner diameter of body A and inner diameter of body B, which could contribute for the analysis and further improvement of idler shaft.


2018 ◽  
Vol 8 (9) ◽  
pp. 1602 ◽  
Author(s):  
Zhao Yang ◽  
Chengxiang Xu

Local buckling in steel tubes was observed to be capable of reducing the ultimate loads of thin-walled concrete-filled steel-tube (CFST) columns under axial compression. To strengthen the steel tubes, steel bars were proposed in this paper to be used as stiffeners fixed onto the tubes. Static-loading tests were conducted to study the compression behavior of square thin-walled CFST columns with steel bar stiffeners placed inside or outside the tube. The effect and feasibility of steel bar stiffeners were studied through the analysis of failure mode, load–displacement relationship, ultimate load, ductility, and local buckling. Different setting methods of steel bars were compared as well. The results showed that steel-bar stiffeners proposed in this paper can be effective in delaying local buckling as well as increasing the bearing capacity of the columns, but will decrease the ductility of the columns. In order to obtain a higher bearing capacity of columns, steel bars with low stiffness should be placed inside and steel bars with high stiffness should be placed outside of the steel tubes. The study is helpful in providing reference to the popularization and application of this new structural measure to avoid or delay the local buckling of thin-walled CFST columns.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
He Zhang ◽  
Kai Wu ◽  
Chao Xu ◽  
Lijian Ren ◽  
Feng Chen

Two columns of thin-walled concrete-filled steel tubes (CFSTs), in which tube seams are connected by self-tapping screws, are axial compression tested and FEM simulated; the influence of local buckling on the column compression bearing capacity is discussed. Failure modes of square thin-wall CFST columns are, first, steel tube plate buckling and then the collapse of steel and concrete in some corner edge areas. Interaction between concrete and steel makes the column continue to withstand higher forces after buckling appears. A large deflection analysis for tube elastic buckling reflects that equivalent uniform stress of the steel plate in the buckling area can reach yield stress and that steel can supply enough designing stress. Aiming at failure modes of square thin-walled CFST columns, a B-type section is proposed as an improvement scheme. Comparing the analysis results, the B-type section can address both the problems of corner collapse and steel plate buckling. This new type section can better make full use of the stress of the concrete material and the steel material; this type section can also increase the compression bearing capacity of the column.


Sign in / Sign up

Export Citation Format

Share Document