Elastic Bending Theory of Composite Bridge with Corrugated Steel Web Considering Shear Deformation

2008 ◽  
Vol 400-402 ◽  
pp. 575-580 ◽  
Author(s):  
Jun He ◽  
Yu Qing Liu ◽  
Ai Rong Chen

The classical Euler-Bernoulli girder theory is not applicable due to shear deformation of corrugated steel web, elastic bending theory considering shear deformation is presented to analyze deflection and mechanical property. Differential equation is derived based on displacement field assumption, internal force equilibrium equations, deformation compatibility condition and relation of deformation and internal force, and solutions are obtained according to boundary and load condition. Simply supported I and box girder bridges with corrugated steel web are analyzed with elastic bending theory considering shear deformation, their predicted results are found in good agreement with those by 3D finite element analysis and test. A limit value of depth-span ratio is suggested for considering influence of shear deformation or not, the simplified formula of deflection in middle span is presented to guide deflection design. Corrugated web accounts for more than 80% of total shear force in the whole span under uniform load while one third apart from bearing under concentrated load in mid-span. The elastic bending theory considering shear deformation makes a reference for designing composite bridge with corrugated steel web.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chi Ma ◽  
Shi-zhong Liu ◽  
Jin Di ◽  
Rui-jie Zhang

Steel bottom plates are applied as replacements for the concrete bottom plates in order to reduce the dead weight of the composite box girders with corrugated steel webs and steel bottom plates (CSWSB). Due to the change in the material, the previous analytical calculation methods of vertical deflection of composite box girders with corrugated steel webs (CSWs) cannot be directly applied to the improved composite box girders. The shear lag warpage displacement function was derived based on the shear deformation laws of the upper flange and the bottom plates of the improved composite box girders. The equations for the calculation of the shear deformation and the additional deflection due to the shear lag of continuous and simply supported composite box girders with CSWSB under concentrated and uniformly distribution loads were derived by considering the double effects of the shear lag and the shear deformations of the top and the bottom plates with different elastic moduli. The analytical solutions of the vertical deflection of the improved composite box girders include the theory of the bending deflection of elementary beams, shear deformation of CSWs, and the additional deflection caused by the shear lag. Based on the theoretical derivation, an analytical solution method was established and the obtained vertical deflection analytical solutions were compared with the finite element method (FEM) calculation results and the experimental values. The analytical equations of vertical deflection under the two supporting conditions and the two load cases have verified the analyses and the comparisons. Further, the additional deflections due to the shear lag and the shear deformation are found to be less than 2% and 34% of the total deflection values, respectively. Moreover, under uniform distributed load conditions, the deflection value was found to be higher than that of the under concentrated load condition. It was also found that the ratio of the deflection caused by the shear lag or the shear deformation to the total deflection decreased gradually with the increase in the span width ratio. When the value of the span width ratio of a single box and single chamber composite box girder with CSWSB was equal to or greater than 8, the deflections caused by the shear lag and the shear deformation could be ignored.


2020 ◽  
Vol 71 (7) ◽  
pp. 853-867
Author(s):  
Phuc Pham Minh

The paper researches the free vibration of a rectangular plate with one or more cracks. The plate thickness varies along the x-axis with linear rules. Using Shi's third-order shear deformation theory and phase field theory to set up the equilibrium equations, which are solved by finite element methods. The frequency of free vibration plates is calculated and compared with the published articles, the agreement between the results is good. Then, the paper will examine the free vibration frequency of plate depending on the change of the plate thickness ratio, the length of cracks, the number of cracks, the location of cracks and different boundary conditions


2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


2012 ◽  
Vol 29 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A. S. Sayyad ◽  
Y. M. Ghugal

AbstractThis paper deals with the problem of stress distribution in orthotropic and laminated plates subjected to central concentrated load. An equivalent single layer trigonometric shear deformation theory taking into account transverse shear deformation effect as well as transverse normal strain effect is used to obtain in-plane normal and transverse shear stresses through the thickness of plate. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. A simply supported plate with central concentrated load is considered for the numerical analysis. Anomalous behavior of inplane normal and transverse shear stresses is observed due to effect of stress concentration compared to classical plate theory and first order shear deformation theory.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Wang Jie

Abstract: The PC box girder Bridge with corrugated steel web, as a new kind of bridge structure, has different mechanical properties from that of the ordinary concrete box girder bridge. Due to the late development of the corrugated steel web pre-stressed box girder structure, the domestic experts have made little research on the transverse load distribution of PC box Girder Bridge with corrugated steel webs. Whether the method of calculating the transverse distribution coefficient in the classical box girder theory can be applied to the corrugated steel web composite box girder and how to further improve the calculation theory and method of the transverse load distribution of the steel box girder bridge need urther study. method of the transverse load distribution of the steel box girder bridge need further study.Based on the "traditional rigid jointed process and the programming ideas of the transverse distribution coefficient of corrugated steel web composite box girder of the "modified rigid jointed beam method".beam method" and the existing research, this paper proposes the "modified rigid-jointed beam method" in combination with the specific internal force distribution of corrugated steel web composite box girder. The computational scheme and formula of mechanics, the calculation process and the programming ideas of the transverse distribution coefficient of corrugated steel web composite box girder of the "modified rigid jointed beam method".


2013 ◽  
Vol 671-674 ◽  
pp. 974-979
Author(s):  
Jie Dai ◽  
Jin Di ◽  
Feng Jiang Qin ◽  
Min Zhao ◽  
Wen Ru Lu

For steel box girder of cable-stayed bridge, which using incremental launching method, during the launching process, structural system and boundary conditions were changing, structure mechanical behaviors were complex. It was necessary to conduct a comprehensive analysis on internal force and deformation of the whole structure during the launching process. Took a cable-stayed bridge with single tower, double cable planes and steel box girder in China as an example; finite element software MIDAS Civil 2010 was used to establish a model for steel box girder, simulation analysis of the entire incremental launching process was carried out. Variation rules and envelopes of the internal force, stress, deformation and support reaction were obtained. The result showed that: the maximum value of positive bending moment after launching complete was 60% of the maximum value of positive bending moment during the launching process. The maximum value of negative bending moment after launching complete was 78% of the maximum value of negative bending moment during the launching process.


1985 ◽  
Vol 29 (04) ◽  
pp. 285-295 ◽  
Author(s):  
Curtis J. Hoff ◽  
Michael M. Bernitsas

The dynamic response of a marine structure depends upon the exciting forces and the modal characteristics of the structure. Excessive vibratory response requires reduction of the exciting loads or redesign of the structure or both. In this paper the general redesign problem is formulated. It applies to large-scale structures and allows for large structural changes. Solution of the redesign problem is achieved through perturbation methods which are an attractive alternative to traditional trial-and-error methods. Perturbation solution methods are based on dynamic equilibrium equations or energy equations or both. A new method based on the energy equations which enforces the mode orthogonality conditions is developed and evaluated against all existing methods. Two test cases, a 191-degree-of-freedom two-dimensional ship model and a 810-degree-of-freedom offshore light tower model are used to compare the methods numerically. It is shown that the method developed in this paper can produce, with a single finite element analysis of the baseline system, a structure which satisfies within acceptable limits all nonconflicting design objectives.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaowei Wang ◽  
Yingmin Li ◽  
Weiju Song ◽  
Jun Xu

Based on the stiffness limitations of the midtower in multitower cable-stayed bridges, a new stiffening system (tie-down cables) is proposed in this paper. The sag effects and wind-induced responses can be reduced with the proposed system because tie-down cables are short and aesthetic compared with traditional stiffening cables. The results show that the stiffening effect of tie-down cables is better than that of traditional stiffening cables in controlling the displacement and internal force of the bridge based on a static experiment and finite element analysis. Therefore, the proposed system can greatly improve the overall stiffness of a bridge, and its stiffening effect is better than that of traditional stiffening cables in controlling the displacement and internal force. The results provide a reference for the application of such systems in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document