Dynamics Redesign of Marine Structures
The dynamic response of a marine structure depends upon the exciting forces and the modal characteristics of the structure. Excessive vibratory response requires reduction of the exciting loads or redesign of the structure or both. In this paper the general redesign problem is formulated. It applies to large-scale structures and allows for large structural changes. Solution of the redesign problem is achieved through perturbation methods which are an attractive alternative to traditional trial-and-error methods. Perturbation solution methods are based on dynamic equilibrium equations or energy equations or both. A new method based on the energy equations which enforces the mode orthogonality conditions is developed and evaluated against all existing methods. Two test cases, a 191-degree-of-freedom two-dimensional ship model and a 810-degree-of-freedom offshore light tower model are used to compare the methods numerically. It is shown that the method developed in this paper can produce, with a single finite element analysis of the baseline system, a structure which satisfies within acceptable limits all nonconflicting design objectives.