Experimental Research and Finite Element Analysis on Behavior of Steel Frame with Semi-Rigid Connections

2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.

2010 ◽  
Vol 163-167 ◽  
pp. 600-604
Author(s):  
Ke Dong Tang ◽  
Jian Fu ◽  
Jun Dai ◽  
Peng Zhang ◽  
Rui Feng Yu

According to the finite element analysis of a circulating fluidized bed boiler steel frame structure, the essay concludes to the calculation results of the main steel structure, moreover the structure and the composition of bars are adjusted and optimized which improve the safety of the structure reliability and reduce the volume of steel. All of the above contents have certain reference value on the similar structure.


2008 ◽  
Vol 400-402 ◽  
pp. 707-711
Author(s):  
Hai Qing Liu ◽  
Jing Yuan ◽  
Shao Ying Hou ◽  
Yang Xue

Application of carbon fiber material to reinforced concrete structure is a systems engineering involving materials, design and application, which is also an applied science involving numerous subjects. Carbon cloth is used to reinforce structures in many projects, but the study on strengthening frame joints is still little. Especially the study on aseismatic performance of frame structure side joints is much less. In this paper, the author established constitutive relation of RC frame side joints strengthened with carbon cloth and made a numerical simulation analysis of four side joints of beam column plate under low-cycle repeated load with ANSYS, a software based on finite element analysis. The author analyzed the failure mode and the mechanism under stress, found out the characteristics of hysteretic curve of such kind of joints, acquired ductility coefficient and equivalent viscous damping ratio coefficient and studied the structure ductility and seismic-energy-dissipating capacity. It was shown that failure mode transited from shear brittle failure of core space to ductile failure of plastic hinge of beam end, joints’ seismic-energy-dissipating capacity and ductility were improved observably, joints’ displacement between layers was reduced, and rigidity and aseismatic capacity of component were improved after the joints’ being reinforced with carbon cloth. And aseismatic performance of structure was superior obviously.


2018 ◽  
Vol 4 (1) ◽  
pp. 27
Author(s):  
Osman Fatih Bayrak ◽  
Seda Yedek ◽  
Muhammet Musab Erdem ◽  
Murat Bikce

Infill walls consisting of materials such as hollow concrete, hollow clay and autoclaved aerated concrete bricks are not only preferred in reinforced concrete buildings but also in steel frame structures. It is a well-known fact that infill walls limit the displacement of frames under horizontal loads. However, they may also bring about certain problems due to being placed randomly in horizontal and discontinuously in vertical directions for some architectural reasons. Moreover, cracks in frame-wall joints are observed in steel frame structures in which ductile behaving steel and brittle behaving infill walls are used together. In this study, the effect of infill walls on steel frames has been investigated. In the steel frame structure chosen for the study, four different situations consisting of different combinations of infill walls have been modeled by using ETABS Software. Later, the pushover analyses have been performed for all the models and their results have been compared. As a result of the analyses done by using the equivalent diagonal strut model, it has been found out that infill walls limit the displacement of steel frames and increase the performance of a structure. However, it has been also determined that in the steel frame structure in which the infill walls have been placed discontinuously in vertical and asymmetrically in horizontal, infill walls may lead to torsional and soft story irregularities. As a result, it is possible to observe cracks in the joints of infill walls and steel frame, the deformation properties of which differ, unless necessary precautions are taken.


2011 ◽  
Vol 255-260 ◽  
pp. 2560-2567
Author(s):  
Peng Bo Zhang ◽  
Yu Ping Sun ◽  
Shi Chun Zhao

Analytical study was conducted to investigate effect of friction dampers on vibration control of steel frame structures. The friction dampers installed in a ten-storey sample frame structure have two levels of fictional resistances. Unlike the conventional friction damper which has one frictional resistance, the friction dampers with variable resistances (VRFD) can apply two levels of frictional resistances, the lower resistance of which is attended to absorb the seismic energy by a moderate earthquake or a strong wind, and the higher one of which is expected to dissipate the seismic energy induced by a severe earthquake. The time-historey analytical results of the sample frame have indicated that the VRFD could not only mitigate the seismic response of the frame structure under a moderate earthquake more effectively than the conventional frictional damper, but also provide the same level of damping effect to the structure under severe earthquake as the conventional one.


2019 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
Xiaojun Yuan ◽  
Yanmu Qu ◽  
Jinlong Liu ◽  
Kailin Wei ◽  
Haifeng Zong

In order to find out the dynamic characteristics of a steel frame structure project in the 8 degree (0.3g) area, the artificial wave, Taft wave and El Centro wave were input by using the finite element analysis software ANSYS. The dynamic time-history analysis of the structure shows the dynamic performance of the structure under the frequent earthquakes and rare earthquakes.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Xuechun Liu ◽  
Ailin Zhang ◽  
Jing Ma ◽  
Yongqiang Tan ◽  
Yu Bai

Modularized prefabricated steel structures have become the preferred design in the industrialization of steel structures due to their advantages of fast construction speed, high degree of industrialization, low labour intensity, and more. Prefabricated steel structures have some engineering applications, but all are low-rise structures with few applications in the field of high-rise buildings. Using finite element analysis with line and solid elements, full-scale experiments were conducted to study the single-span frame, which is the core load-bearing part of a modularized prefabricated high-rise steel frame structure with inclined braces. The mechanical mechanisms, computation methods, and design formulas of truss girders were obtained by comparing the finite element and model experiments and building a theoretical and experimental basis for the compilation of design codes. The mechanical characteristics under design load, the deformation and stress state, the elastic-plastic law of development, and the yield failure mode and mechanism under horizontal ultimate load were also obtained. Based on theoretical analysis, finite element analysis, and experiments, the design method of this frame was summarized and incorporated into the design code.


2013 ◽  
Vol 351-352 ◽  
pp. 524-527
Author(s):  
Cui Ling Ma ◽  
Song Dan Sun ◽  
Xian Lei Cao

Based on the analysis for 10 series (altogether 50) of finite element analytic models, the time-history analysis is discussed in this paper to investigate the relations between frame parameters of semi-rigid steel frames, these parameters include the frame's floor number, the frame's span number, especially the rotation stiffness of beam-to-column connections. Comparing with the steel frame structure, the ductility of semi-rigid steel frame structure is improved with the reduction in the rotation stiffness of connections. Furthermore, semi-rigid steel frame structure under seismic loads has a good seismic performance.


Sign in / Sign up

Export Citation Format

Share Document