Fracture Toughness of Si3N4 Based Ceramics with Rare-Earth Oxide Sintering Additives

2009 ◽  
Vol 409 ◽  
pp. 377-381 ◽  
Author(s):  
Peter Tatarko ◽  
Štefánia Lojanová ◽  
Ján Dusza ◽  
Pavol Šajgalík

Fracture toughness of hot-pressed silicon nitride and Si3N4+SiC nanocomposites prepared with different rare-earth oxides (La2O3, Sm2O3, Y2O3, Yb2O3, Lu2O3) sintering additives have been investigated by Chevron Notched Beam, Indentation Strength and Indentation Fracture techniques. The fracture toughness values of composites were lower due to the finer microstructures and the lack of toughening mechanisms. In the Si3N4 with higher aspect ratio (Lu or Yb additives) crack deflection occurred more frequently compared to the Si3N4 doped with La or Y, which was responsible for the higher fracture toughness.

2014 ◽  
Vol 971-973 ◽  
pp. 7-10 ◽  
Author(s):  
Yun Long Zhang ◽  
Yu Min Zhang ◽  
Ming Hu ◽  
Jin Ping Li

In this investigation, the rare-earth oxide Y2O3combined with Al2O3served as sintering additives and commercial α-SiC powder were applied to fabricate Cf/SiC composites by hot-pressing sintering. The results proved that combination of Al2O3and Y2O3sintering additives was effective for densification of Cf/SiC composites. The influence of annealed temperature on the phase constitution, microstructure and mechanical properties of the Cf/SiC composites was detailed. The combination of grain bridging, crack deflection and fiber debonding can improve fracture toughness. Keywords: Pressing sintering, Mechanical Properties, Annealed Treatment


Author(s):  
Xu Youren ◽  
Huang Liping ◽  
Fu Xiren ◽  
Yen Tungsheng

A hot-pressed silicon nitride ceramic material with rare-earth oxides additive has been processed, its bend strength maintains 800–900 MPa up to 1300°C and measures 680 MPa at 1400°C, its fracture toughness at room temperature is 4.38–4.96 MPam. X-ray, SEM, EDS and electron probe analyses reveal that the microstructure of this material is composed of fine β-Si3N4 grains, α-Si3N4 whiskers, small tetragonal lanthanide crystals and La-containing glassy phase. Observation on fracture surface shows that the fracture path is mainly transcrystalline up to 1400°C. The effects of additives on strength and fracture toughness of HPSN obtained are also discussed.


2010 ◽  
Vol 4 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Peter Tatarko ◽  
Stefánia Lojanová ◽  
Ján Dusza ◽  
Pavol Sajgalík

Influence of various rare-earth oxide additives (La2O3, Nd2O3, Sm2O3, Y2O3, Yb2O3 and Lu2O3) on the mechanical properties of hot-pressed silicon nitride and silicon nitride/silicon carbide micro/nano-composites has been investigated. The bimodal character of microstructures was observed in all studied materials where elongated ?-Si3N4 grains were embedded in the matrix of much finer Si3N4 grains. The fracture toughness values increased with decreasing ionic radius of rare-earth elements. The fracture toughness of composites was always lower than that of monoliths due to their finer Si3N4/SiC microstructures. Similarly, the hardness and bending strength values increased with decreasing ionic radius of rare-earth elements either in monoliths or composites. On the other hand, the positive influence of finer microstructure of the composites on strength was not observed due to the present defects in the form of SiC clusters and non-reacted carbon zones. Wear resistance at room temperature also increased with decreasing ionic radius of rare-earth element. Significantly improved creep resistance was observed in case either of composite materials or materials with smaller radius of RE3+. .


2011 ◽  
Vol 675-677 ◽  
pp. 143-146
Author(s):  
Fen Wang ◽  
Xiao Feng Wang ◽  
Jian Feng Zhu ◽  
Liu Yi Xiang

Effects of rare-earth oxides addition (0.38~1.52 mol% of Sm2O3, Eu2O3 and Er2O3) on the property and microstructure of the hot-pressed (1300°C, 2h, 35 MPa) Al2O3 (12 wt %)/TiAl insitu composites have been investigated. The results show that the doping of rare-earth oxides has a positive effect on both mechanical properties and densities of Al2O3/TiAl composites. Densities enhanced with increasing of rare-earth oxides. The flexural strength and fracture toughness were higher than other samples when the rare-earth oxide content was 0.38 mol %. The matrix grains and Al2O3 particles were significantly refined, and Al2O3 particles evenly distributed in the matrix.


2004 ◽  
Vol 19 (9) ◽  
pp. 2750-2758 ◽  
Author(s):  
Mark I. Jones ◽  
Kiyoshi Hirao ◽  
Hideki Hyuga ◽  
Yukihiko Yamauchi

The wear properties under low loads of β Si3N4 and α sialon materials sintered with different rare-earth oxide sintering additives have been studied under dry sliding conditions using block-on-ring wear tests. All the worn surfaces showed an absence of fracture and smooth surfaces with the presence of an oxygen-rich filmlike debris indicating tribochemically induced oxidation of the surfaces. Extensive grain boundary removal was observed on the worn surfaces thought to be due to adhesion between this silicate phase and the tribochemically oxidized surfaces. The resistance to such oxidation and the properties of the residual grain boundary phase are thought to be important parameters affecting the wear behavior under the present testing conditions. For both the β Si3N4 and α sialon materials, there was an increase in wear resistance with decreasing cationic radius of the rare earth, thought to be due to improved oxidation resistance, and this was more remarkable in the case of the sialon materials where the incorporation of the sintering additives into the Si3N4 structure results in a lower amount of residual boundary phase.


2010 ◽  
Vol 105-106 ◽  
pp. 27-30 ◽  
Author(s):  
Wei Ru Zhang ◽  
Feng Sun ◽  
Ting Yan Tian ◽  
Xiang Hong Teng ◽  
Min Chao Ru ◽  
...  

Silicon nitride ceramics were prepared by gas pressure sintering (GPS) with different sintering additives, including La2O3, Sm2O3 and Al2O3. Effect of sintering additives on the phase-transformation, microstructure and mechanical properties of porous silicon nitride ceramics was investigated. The results show that the reaction of sintering additives each other and with SiO2 had key effects on the phase-transformation, grain growing and grain boundaries. With 9MPa N2 atmosphere pressure, holding 1h at 1850°C, adding 10wt% one of the La2O3, Sm2O3, Al2O3, porous silicon nitride was prepared and the relative density was 78%, 72%, 85% respectively. The flexural strength was less than 500MPa, and the fracture toughness was less than 4.8MPam1/2. Dropping compounds sintering additives, such as La2O3+Al2O3, Sm2O3+Al2O3 effectively improves the sintering and mechanical properties. The relative density was 99.2% and 98.7% with 10wt% compounds sintering additives. The grain ratio of length to diameter was up to 1:8. The flexural strength was more than 900MPa, and the fracture toughness was more than 8.9MPam1/2.


2004 ◽  
Vol 69 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Aleksandra Vuckovic ◽  
Snezana Boskovic ◽  
Ljiljana Zivkovic

The objective of this work was to investigate the effect of two different sintering additives (CeO2 and Y2O3 + Al2O3), sintering time and amount of ?-Si3N4 seeds on the densification, mechanical properties and microstructure of self-reinforced Si3N4 based composites obtained by pressureless sintering. Preparation of ?-Si3N4 seeds, also obtained by a pressureless sintering procedure, is described. Samples without seeds were prepared for comparison. The results imply that self-reinforced silicon nitride based composites with densities close to the theoretical values and with fracture toughness of 9.3MPa m1/2 can be obtained using a presureless sintering procedure.


ChemInform ◽  
1988 ◽  
Vol 19 (33) ◽  
Author(s):  
E. RAPOPORT ◽  
C. BRODHAG ◽  
F. THEVENOT

Sign in / Sign up

Export Citation Format

Share Document