Optimal Design of Gear Transmission System of Increasing Speed for Half-Direct-Drive Tidal Current Energy Station

2010 ◽  
Vol 450 ◽  
pp. 345-348 ◽  
Author(s):  
Fan Kai Kong ◽  
Su Ge Yin ◽  
Hong Yun Lin ◽  
Qi Hu Sheng

The half-direct-drive transmission is conducted for the transmission system of tidal current power stations using a small speed-up ratio of planetary gearbox between turbine and generator. A design model is developed for the optimization of the planetary gear transmission system. And a mixed genetic algorithm is applied on the basis of fundamentals of genetic algorithm to carry out the optimization. From the example calculation, a better design scheme is obtained by the optimization.

2011 ◽  
Vol 86 ◽  
pp. 518-522 ◽  
Author(s):  
Hui Tao Chen ◽  
Xiao Ling Wu ◽  
Da Tong Qin ◽  
Jun Yang ◽  
Zhi Gang Zhou

The effects of gear manufacturing error on the dynamic characteristics of planetary gear transmission system of wind turbine are studied in this paper. Firstly, the static transmission error combined with manufacturing error of the gear is deduced. Then, the nonlinear dynamic model of planetary gear transmission system of wind turbine is set up with the consideration of time-varying mesh stiffness, backlash and manufacturing error. Finally, the statistical characteristics of Vibration displacement response process of each component of planetary gear transmission system are obtained by simulation analysis of the planetary gear system of 1.5MW Semi-direct drive wind turbine with the consideration of the torque fluctuation caused by wind speed. The research results lay a foundation for reliability design and optimizing of gear transmission system of wind turbine.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhengming Xiao ◽  
Fu Chen ◽  
Kongliang Zhang

Multistage planetary gear transmission system has been widely utilized in engineering practice due to the salient characteristics, such as high bearing load and large speed ratio. This paper addresses a two-stage planetary gearbox and establishes a system coupling torsional dynamical model which considers the time-varying mesh stiffness, friction forces, and interstage coupling factors. Meanwhile, the friction and lubrication states are classified to comprehensively analyze the calculation of friction coefficients under different conditions. Considering the time-varying influence of friction on the tooth surface under the condition of fluid lubrication, the vibration response under parametric excitation is solved by a numerical method. A multistage planetary transmission test bench is built in the back-to-back form so as to test the vibration of the two-stage planetary gearbox. It shows that the simulation results of the dynamical model are consistent with the test data. Consideration of the calculation of friction on the tooth surface and the friction coefficients is helpful for the establishment of the more accurate dynamical model and lays the foundation for the structural design, fault diagnosis, and dynamic optimization of the multistage planetary gear transmission system.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110356
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Renzhen Chen

According to the working characteristics of a 1.5 MW wind turbine planetary gear system under complex and random wind load, a two-parameter Weibull distribution model is used to describe the distribution of random wind speed, and the time-varying load caused by random wind speed is obtained. The nonlinear dynamic model of planetary gear transmission system is established by using the lumped parameter method, and the relative relations among various components are derived by using Lagrange method. Then, the relative relationship between the components is solved by Runge Kutta method. Considering the influence of random load and stiffness ratio on the planetary gear transmission system, the nonlinear dynamic response of cyclic load and random wind load on the transmission system is analyzed. The analysis results show that the variation of the stiffness ratio makes the planetary gear have abundant nonlinear dynamics behavior and the planetary gear can get rid of chaos and enter into stable periodic motion by changing the stiffness ratio properly on the premise of ensuring transmission efficiency. For the variable pitch wind turbine, the random change of external load increases the instability of the system.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Qilin Huang ◽  
Yong Wang ◽  
Zhipu Huo ◽  
Yudong Xie

A nonlinear purely rotational dynamic model of a multistage closed-form planetary gear set formed by two simple planetary stages is proposed in this study. The model includes time-varying mesh stiffness, excitation fluctuation and gear backlash nonlinearities. The nonlinear differential equations of motion are solved numerically using variable step-size Runge-Kutta. In order to obtain function expression of optimization objective, the nonlinear differential equations of motion are solved analytically using harmonic balance method (HBM). Based on the analytical solution of dynamic equations, the optimization mathematical model which aims at minimizing the vibration displacement of the low-speed carrier and the total mass of the gear transmission system is established. The optimization toolbox in MATLAB program is adopted to obtain the optimal solution. A case is studied to demonstrate the effectiveness of the dynamic model and the optimization method. The results show that the dynamic properties of the closed-form planetary gear transmission system have been improved and the total mass of the gear set has been decreased significantly.


2020 ◽  
Vol 30 (06) ◽  
pp. 2050080
Author(s):  
Ling Xiang ◽  
Zeqi Deng ◽  
Aijun Hu

The transverse-torsional nonlinear model of multistage gear transmission system which is comprised of a planetary gear set and two parallel gear stages is proposed with time-varying meshing stiffness, comprehensive gear errors and gear backlash. The nonlinear dynamic responses are analyzed by applying excitation frequency and support stiffness as the bifurcation parameters. The motions of the system are identified through global bifurcation diagram, largest Lyapunov exponent (LLE) and Poincaré map. The numerical results demonstrate that the support stiffness affects the system, especially on planetary gear set. The motions of the system with the changes of the support stiffness are diverse including some different multiperiodic motions. Also, the state of the system undergoes 2T-periodic motion, chaos, quasi-periodic behavior and multiperiodic motion. For the support stiffness or other nonlinear factors of the gear system, the suitable range of working frequencies could make the system stable. Correspondingly, parameters of the system should be designed properly and controlled for the better operation and enhancing the life of the system.


2013 ◽  
Vol 569-570 ◽  
pp. 489-496 ◽  
Author(s):  
Yong Gui ◽  
Qin Kai Han ◽  
Zheng Li ◽  
Zhi Ke Peng ◽  
Fu Lei Chu

Tooth breakage is a typical failure form of wind-turbine planetary gear transmission system, it is important to study the influence of tooth breakage on vibration characteristics of planetary gear transmission system. In this paper, considering the tooth breakage defect, a lumped parameter vibration model of a planetary gear system with time-periodic mesh stiffness is established. Effects of the length and width of tooth breakage on meshing stiffness and dynamic response are discussed in detail. The relation between characteristic frequency of the tooth breakage fault and rotating speeds is pointed out. Several statistical indicators are utilized to show the influence of two parameters (length of planet tooth breakage and input speed) on the dynamic response of the system. Experiments are carried out to verify the simulation results. These results would be useful for fault diagnosis of wind turbine transmission system at different operation conditions.


Author(s):  
Cheng Wang

Planetary gear transmission system has been widely used in the field of aerospace equipment, automobiles, ships, etc. High power density design is an important development direction for transmission machinery, but there is a lack of systematic and deepening research in planetary gear transmission system field. Taken the most widely used 2K–H-type planetary gear transmission system as research object, a design method of high power density considering volume and efficiency is put forward. First, the transmission efficiency model of 2K–H-type planetary gear transmission system is built on the basis of calculation of single gear pair meshing efficiency instead of the look-up table method. Second, the volume model of 2K–H-type planetary gear transmission system is built according to the structure of gear. Finally, the smallest volume and the minimum power loss of 2K–H-type planetary gear transmission system are the target of optimization, and the linear-weighted combination method is used to construct target function. Taken a 2K–H-type planetary gear reducer in some machine tool as an example, the optimization is carried out. The results show that the power loss of optimized system is reduced by 11.42%, and the volume of system is reduced by 25.2%.


Sign in / Sign up

Export Citation Format

Share Document