Holes Machining Process Optimization with Genetic Algorithm

2011 ◽  
Vol 460-461 ◽  
pp. 117-122 ◽  
Author(s):  
Guang Yu Zhu ◽  
Lian Fang Chen

In this paper, a multi-level method has been adopted to optimize the holes machining process with genetic algorithm (GA). Based on the analyzing of the features of the part with multi-holes, the local optimal processing route for the holes with the same processing feature is obtained with GA, then try to obtain the global optimal route with GA by considering the obtained local optimal route and the holes with different features. That is what the multi-level method means. The optimal route means the minimum moving length of the cutting tool and the minimum changing times of the cutting tool. The experiment is carried out to verify the algorithm and the proposed method, and result indicates that with GA and using the multi-level method the optimal holes machining route can be achieved efficiently.

2004 ◽  
Vol 471-472 ◽  
pp. 825-829
Author(s):  
Wen Ge Wu ◽  
Si Qin Pang ◽  
Qi Xun Yu

Reversible cutting method is a research thesis proposed to shorten processing route, decrease tool number and handling time, increase machining efficiency. There are three movement ways, i.e. reversible feed motion, reversible primary motion and reversible composite motion. Primary motion is done by workpiece, conventional or reversible feed motion is done by cutting tool in the way of reversible feed motion, e.g. turning. Cutting velocity is passed to cutting tool, clockwise or anti-clockwise cutting movement is done by cutting tool in the way of reversible primary motion, e.g. milling, shaping, drilling (spade drill), reaming. Primary and feed motions are all reversible in composite motion, e.g. turn-milling. Chip deformation and machined surface with reversible finishing is discussed. A mechanical analysis is carried out to the workpiece deformation of slender shaft turning in normal direction and reversible direction. The result has been verified by experiments. Experimental data for the range of cutting parameters tested showed that the reversible fine machining produce the compressive residual stresses at the surface, which are critical in the performance of the machined components. Experimental research indicted that the results of micro-hardness of reversible fine machining technique are smaller than that of general fine machining show that decreased plastic deformation of the surface layer and work-hardening. It can be adopted such planning which rough machining during advance stroke and fine machining during return stroke in machining process.


2018 ◽  
Vol 151 ◽  
pp. 04001 ◽  
Author(s):  
Li Maoquan ◽  
Zhang Yunfei ◽  
Li Shihao

It is established for a gradational route planning algorithm which includes two layers. The first layer makes use of genetic algorithm to obtain the global optimal path by its global optimal characteristics. The second layer makes use of A* algorithm to obtain the local optimal path by its dynamic characteristic. When flying along the global optimal path, locating the new threat and confirming its performance, the aircraft can plan the local optimal path timely by A* algorithm. It is constructed for the cost function with two goals of the range and the average detection probability, which is used as the goal function for optimal path planning. Two paths that obtained from two optimal methods are merged to construct the optimal route comprehensively considering the threats and range. The simulation result shows that the cost of new optimal route is lower than the original optimal path obtained only by the genetic algorithm.It revealed that our algorithm could obtain an optimal path when a new radar threas occured.


2021 ◽  
Vol 11 (11) ◽  
pp. 4743
Author(s):  
Fernando Cepero-Mejias ◽  
Nicolas Duboust ◽  
Vaibhav A. Phadnis ◽  
Kevin Kerrigan ◽  
Jose L. Curiel-Sosa

Nowadays, the development of robust finite element models is vital to research cost-effectively the optimal cutting parameters of a composite machining process. However, various factors, such as the high computational cost or the complicated nature of the interaction between the workpiece and the cutting tool significantly hinder the modelling of these types of processes. For these reasons, the numerical study of common machining operations, especially in composite machining, is still minimal. This paper presents a novel approach comprising a mixed multidirectional composite damage mode with composite edge trimming operation. An ingenious finite element framework which infer the cutting edge tool wear assessing the incremental change of the machining forces is developed. This information is essential to replace tool inserts before the tool wear could cause severe damage in the machined parts. Two unidirectional carbon fibre specimens with fibre orientations of 45∘ and 90∘ manufactured by pre-preg layup and cured in an autoclave were tested. Excellent machining force predictions were obtained with errors below 10% from the experimental trials. A consistent 2D FE composite damage model previously performed in composite machining was implemented to mimic the material failure during the machining process. The simulation of the spring back effect was shown to notably increase the accuracy of the numerical predictions in comparison to similar investigations. Global cutting forces simulated were analysed together with the cutting tool tooth forces to extract interesting conclusions regarding the forces received by the spindle axis and the cutting tool tooth, respectively. In general terms, vertical and normal forces steadily increase with tool wear, while tangential to the cutting tool, tooth and horizontal machining forces do not undergo a notable variation.


2021 ◽  
pp. 115107
Author(s):  
Tulika Dutta ◽  
Sandip Dey ◽  
Siddhartha Bhattacharyya ◽  
Somnath Mukhopadhyay ◽  
Prasun Chakrabarti

2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


2017 ◽  
Vol 4 (2) ◽  
pp. 158-167 ◽  
Author(s):  
Ruholla Jafari-Marandi ◽  
Brian K. Smith

Abstract Genetic Algorithm (GA) has been one of the most popular methods for many challenging optimization problems when exact approaches are too computationally expensive. A review of the literature shows extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA), some of these concepts are changed, removed, and furthermore, new concepts are introduced. The performance of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success rate and better convergence control, but it can be applied to a wider range of problems including multi-objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric Assignment Problem (AQP), is shown and experienced. Highlights This work presents a novel Genetic Algorithm alteration. Chromosome concept and structure in FGA is more similar to the real genetic world. FGA comprises global and individual learning rates. We show FGA enjoys higher success rate, and better convergence control.


2014 ◽  
Vol 551 ◽  
pp. 221-227
Author(s):  
Zhi Qiang Zhang ◽  
Tie Qiang Gang ◽  
Yi Kai Yi

In this paper, based on finite element simulation software AdvantEdge, the effects of different coating materials and thickness on the wear of cutting tools during the machining process have been studied. For the tools with coating materials of TiAlN, Al2O3, TiN, TiC, we can calculate the wear rate according to the Usui mathematical model of tool wear, and then consider thickness factor of TiC coating. Because of the lowest thermal conductivity, the workpiece cut by TiC coated tool will soften first and more over cutting time, it result in the lowest wear rate. And with the increase of coating thickness, the effect of "thermal barrier" is more obvious for the relatively thicker coating tool, but the relative sliding velocity between the chip and tool is increasing meanwhile, so a suitable coating thickness is necessary.


Sign in / Sign up

Export Citation Format

Share Document