Analysis of Mechanical Performance of Crumb Rubber Concrete by Different Aggregate Shape under Uniaxial Compression on Mesoscopic

2011 ◽  
Vol 462-463 ◽  
pp. 219-222 ◽  
Author(s):  
Gen Quan Zhong ◽  
Yong Chang Guo ◽  
Li Juan Li ◽  
Feng Liu

From micro perspective, crumb rubber concrete (CRC) is viewed as a composite consisting of mortar matrix, aggregates and rubber particle. In this paper, based on random aggregate model with different aggregate shape in planar, the mechanical properties of CRC using linear Mohr-coulomb constitutive relation are studied by nonlinear finite element method under uniaxial compression on mesoscopic. The number of random aggregates is calculated in two-dimension by Walraven formula. Circular random aggregate model, elliptic random aggregate model and polygonal random aggregate model are established. Stress-strain curves under varieties of conditions are derived and compared with the test results. The results show that the simulative stress-strain curve fit the reality very much. In the numerical analysis, the aggregate shape has little effect on the mechanical properties of CRC.

2013 ◽  
Vol 645 ◽  
pp. 172-175
Author(s):  
Wei Li ◽  
Xiao Chu Wang ◽  
Jun Wei Wang ◽  
Chuan Ji Wang

The mechanical properties of concrete with composition of scrapped rubber tyre crumb replacing part of the fine aggregates were investigated. The testing method of the mechanical properties was executed according to . Many groups of crumb rubber concrete specimens are manufactured in different kinds of size and amount of rubber chips. The powder rubber and crumb rubber were mixed into C35 plain concrete, by the volume rations of 0%, 20%, 40 %, 60%, 80% and 100% of the fine aggregates, to investigate the influence of size and amount of rubber chips on the mechanical properties. The results of test indicate: the cubic compression strength, the tensile splitting strength and the strength of rupture decreased with the increase of rubber admixture. But there are some remarkable properties which is difficult to attain on ordinary concrete, such as better cracking resistance, better deformation property, minor density and so on.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yijiang Peng ◽  
Yao Wang ◽  
Qing Guo ◽  
Junhua Ni

The base force element method (BFEM) on damage mechanics is used to analyze the compressive strength, the size effects of compressive strength, and fracture process of concrete at mesolevel. The concrete is taken as three-phase composites consisting of coarse aggregate, hardened cement mortar, and interfacial transition zone (ITZ) on mesolevel. The random aggregate model is used to simulate the mesostructure of concrete. The mechanical properties and fracture process of concrete under uniaxial compression loading are simulated using the BFEM on damage mechanics. The simulation results agree with the test results. This analysis method is the new way for investigating fracture mechanism and numerical simulation of mechanical properties for concrete.


Author(s):  
Roman Chylík ◽  
Tomáš Trtík ◽  
Josef Fládr ◽  
Petr Bílý

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yihong Wang ◽  
Jiawei Chen ◽  
Danying Gao ◽  
E. Huang

Crumb rubber concrete (CRC) is an environment-friendly material using crumb rubber as a composition of cement concrete. It provides an alternative method for recycling of waste tires scientifically. CRC exhibits numerous advantages compared to ordinary concrete. However, the application of CRC is limited due to its low compressive and tensile strengths. This paper puts forward a new modified method by adding steel fibers and nanosilica in CRC. Material properties’ testing of eighteen concrete mixtures was investigated, considering different strength grades of CRC and crumb rubber contents. In addition, four different steel fiber contents (0%, 0.5%, 1.0%, and 1.5%) and three different nanosilica content (0%, 1%, and 2%) were taken into consideration. The brittle failure of the CRC can be improved and the mechanical properties can be enhanced according to the test results. More importantly, the modified CRC with 1.0% steel fiber content has relatively high compressive and splitting tensile strengths. Furthermore, the noncompactness of CRC can be effectively improved by nanosilica, enhancing the efficiency of steel fibers simultaneously. Finally, the failure mechanism of the modified CRC is discussed in this paper.


2014 ◽  
Vol 543-547 ◽  
pp. 4031-4034 ◽  
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

For researching the way of modified and mechanism of action of the Crumb Rubber Concrete,we had researched the change regulation of Mechanical Properties and compressive strengthsplitting tensile strengthflexural strength of the Crumb Rubber Concrete Modified By Silica Fume with various quantity of rubber,in the condition of 10% silica fume.the experimental result make it clear that silica fume is propitious to heighten compressive strengthsplitting tensile strengthflexural strength of the Crumb Rubber Concrete,and compressive strengthsplitting tensile strengthflexural strength would be cut down when mix the Crumb rubber in Concrete.


2014 ◽  
Vol 936 ◽  
pp. 1442-1445
Author(s):  
Jun Cai

This paper presents the results of a study on mechanical properties of crumb rubber concrete (CRC). The compressive strength, splitting tensile strength and flexural toughness of CRC were investigated. The effect of crumb rubber proportion on the mechanical properties was experimentally analyzed. The test results indicate that the addition of crumb rubber can significantly improve the ductility and flexural toughness of CRC.


2012 ◽  
Vol 594-597 ◽  
pp. 929-932 ◽  
Author(s):  
Min Du ◽  
Ping Gao ◽  
Fa Jia Chen

As the key component, the aggregates have a significant impact on the concrete’s mechanical properties and fracture modes. To study the impact of aggregates distribution on concrete failure, the extended finite element method (XFEM) is adopted to simulate the mesostructure failure process by virtue of random aggregate model under uniaxial tension. The result shows that aggregates distribution has little effect on the concrete mechanical properties, but aggregates distribution effect fracture modes.


Sign in / Sign up

Export Citation Format

Share Document