Effects of Processing Parameters on the Laser Deposited Co-285 + WC Coatings

2011 ◽  
Vol 464 ◽  
pp. 568-571
Author(s):  
Gui Fang Sun ◽  
Rui Zhou ◽  
Peng Li ◽  
Yong Kang Zhang

Laser-aided direct metal deposition (LADMD) technique was used to fabricate Co-285+WC coatings on 1018 mild steels. The effects of the processing parameters (laser power P, addition amount of WC, scanning speed V) on the microhardness of the deposited coatings was analyzed. Results indicate that the microhardness of the matrix and the Rockwell hardness of the deposited coatings increases with the addition of WC and the P/V value. The addition amount of WC has the most important effect on the two hardness values, followed by the scanning speed and the laser power. Results of the optimized specimen in this study indicate that the deposited coating is composed of undissolved WC, dendrites, eutectics and the coral structures. The wear mechanism of the deposited coating is a mixture of abrasive, adhesive and oxidation wear.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
You-Cheng Chang ◽  
Hong-Chuong Tran ◽  
Yu-Lung Lo

Purpose Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature gradient and high cooling rate produced during the fabrication process result in residual stress, which may prompt part warpage, cracks or even baseplate separation. Accordingly, an appropriate selection of the LPBF processing parameters is essential to ensure the quality of the built part. This study, thus, aims to develop an integrated simulation framework consisting of a single-track heat transfer model and a modified inherent shrinkage method model for predicting the curvature of an Inconel 718 cantilever beam produced using the LPBF process. Design/methodology/approach The simulation results for the curvature of the cantilever beam are calibrated via a comparison with the experimental observations. It is shown that the calibration factor required to drive the simulation results toward the experimental measurements has the same value for all settings of the laser power and scanning speed. Representative combinations of the laser power and scanning speed are, thus, chosen using the circle packing design method and supplied as inputs to the validated simulation framework to predict the corresponding cantilever beam curvature and density. The simulation results are then used to train artificial neural network models to predict the curvature and solid cooling rate of the cantilever beam for any combination of the laser power and scanning speed within the input design space. The resulting processing maps are screened in accordance with three quality criteria, namely, the part density, the radius of curvature and the solid cooling rate, to determine the optimal processing parameters for the LPBF process. Findings It is shown that the parameters lying within the optimal region of the processing map reduce the curvature of the cantilever beam by 17.9% and improve the density by as much as 99.97%. Originality/value The present study proposes a computational framework, which could find the parameters that not only yield the lowest distortion but also produce fully dense components in the LPBF process.


2021 ◽  
Vol 871 ◽  
pp. 277-283
Author(s):  
Chun Yan Yang ◽  
Yun Hao ◽  
Bozhe Wang ◽  
Hai Yuan ◽  
Liu Hui Li

A picosecond laser in spin-cutting mode was used to drill 500μm diameter microholes on 150μm thick aluminium nitride ceramic. The effects of laser processing parameters such as the laser power, scanning speed, and defocus amount on the microhole quality were studied. The results show that as the laser power increases, the inlet and outlet diameters of the holes increase, the taper decreases slightly, and the thickness of the recast layer decreases evidently. The scanning speed has no obvious effect on the diameter and taper of the hole; however, the hole can not be drilled through when the speed is too large. Positive defocus can effectively reduce the taper of the hole. Under 28.5W laser power, 400Hz frequency, 200mm/s scanning speed, and zero defocus amount conditions, high-quality microholes with a taper of 0.85° were obtained.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4849
Author(s):  
T. Minasyan ◽  
S. Aydinyan ◽  
E. Toyserkani ◽  
I. Hussainova

Mo(Si1−x,Alx)2 composites were produced by a pulsed laser reactive selective laser melting of MoSi2 and 30 wt.% AlSi10Mg powder mixture. The parametric study, altering the laser power between 100 and 300 W and scan speed between 400 and 1500 mm·s−1, has been conducted to estimate the effect of processing parameters on printed coupon samples’ quality. It was shown that samples prepared at 150–200 W laser power and 400–500 mm·s−1 scan speed, as well as 250 W laser power along with 700 mm·s−1 scan speed, provide a relatively good surface finish with 6.5 ± 0.5 µm–10.3 ± 0.8 µm roughness at the top of coupons, and 9.3 ± 0.7 µm–13.2 ± 1.1 µm side surface roughness in addition to a remarkable chemical and microstructural homogeneity. An increase in the laser power and a decrease in the scan speed led to an apparent improvement in the densification behavior resulting in printed coupons of up to 99.8% relative density and hardness of ~600 HV1 or ~560 HV5. The printed parts are composed of epitaxially grown columnar dendritic melt pool cores and coarser dendrites beyond the morphological transition zone in overlapped regions. An increase in the scanning speed at a fixed laser power and a decrease in the power at a fixed scan speed prohibited the complete single displacement reaction between MoSi2 and aluminum, leading to unreacted MoSi2 and Al lean hexagonal Mo(Si1−x,Alx)2 phase.


2011 ◽  
Vol 686 ◽  
pp. 646-653 ◽  
Author(s):  
Jing Liang ◽  
Sui Yuan Chen ◽  
Chang Sheng Liu ◽  
Feng Hua Liu

Two kinds of mixed powders:Ti-6Al-4V/B/C and Ti-6Al-4V/B4C which are pre-pasted or synchronized fed on Ti-6Al-4V substrates separately were scanned by a 500W pulsed YAG laser to induce in situ formation of titanium composite coatings contained TiBxand TiC ceramic reinforced phases. The influences of laser processing parameters including Pulse Frequency (PF), Pulse Width (PW), Laser Power (P) and Scanning Speed (V) together with the powder proportions on the microstructure and properties of the coatings were investigated. Microstructures, phase components of the coating were analyzed by OM, SEM, TEM and XRD respectively. Experimental results show that two and more kinds of ceramic reinforcements were in situ formatted in the matrix of Ti-6Al-4V. TiB and TiC ceramics were formed evenly with the morphology of needle, tiny dendrites and disperse particles in the prepasted single path specimens. For the powder feed laser cladding layers, the ceramic reinforcements were TiB (needlelike), TiB2(hexagonal prism or rodlike), a small amount of TiC (disperse particles) and non fully reacted B4C. The microhardness increased with the increase of the amount of B4C and B+C additions. When the added B and C contents are the same, the microhardness of the coating with B4C addition is higher than that of the coating with B+C addition. The average micro-hardness of a powder prepasted (with 20 wt.% B4C addition) multi-path laser cladding layer formed under the optimized processing parameters is up to 800HV, which is more than 2 times of that of the substrate (340Hv), and the wear weight loss of the layer decreased nearly 3 times that of the substrate.


Author(s):  
Yong Deng ◽  
Zhongfa Mao ◽  
Nan Yang ◽  
Xiaodong Niu ◽  
Xiangdong Lu

Although the concept of additive manufacturing has been proposed for several decades, momentum of selective laser melting (SLM) is finally starting to build. In SLM, density and surface roughness, as the important quality indexes of SLMed parts, are dependent on the processing parameters. However, there are few studies on their collaborative optimization in SLM to obtain high relative density and low surface roughness simultaneously in the previous literature. In this work, the response surface method was adopted to study the influences of different processing parameters (laser power, scanning speed and hatch space) on density and surface roughness of 316L stainless steel parts fabricated by SLM. The statistical relationship model between processing parameters and manufacturing quality is established. A multi-objective collaborative optimization strategy considering both density and surface roughness is proposed. The experimental results show that the main effects of processing parameters on the density and surface roughness are similar. It is noted that the effects of the laser power and scanning speed on the above objective quality show highly significant, while hatch space behaves an insignificant impact. Based on the above optimization, 316L stainless steel parts with excellent surface roughness and relative density can be obtained by SLM with optimized processing parameters.


2020 ◽  
Vol 26 (5) ◽  
pp. 871-879 ◽  
Author(s):  
Haihua Wu ◽  
Junfeng Li ◽  
Zhengying Wei ◽  
Pei Wei

Purpose To fabricate a selective laser melting (SLM)-processed AlSi10Mg part with almost full density and free of any apparent pores, this study aims to investigate the effect of ambient argon pressure and laser scanning speed on the particles splash during the AlSi10Mg powder bed laser melting. Design/methodology/approach Based on the discrete element method (DEM), a 3D model of random distribution of powder particles was established, and the 3D free surface of SLM forming process was dynamically tracked by the volume of fluid, where a Gaussian laser beam acts as the energy source melting the powder bed. Through the numerical simulation and process experimental research, the effect of the applied laser power and scanning speed on the operating laser melting temperature was studied. Findings The process stability has a fundamental role in the porosity formation, which is process-dependent. The effect of the processing conditions on the process stability and the resultant forming defects were clarified. Research limitations/implications The results shows that the pores were the main defects present in the SLM-processed AlSi10Mg sample, which decreases the densification level of the sample. Practical implications The optimal processing parameters (argon pressure of 1,000 Pa, laser power of 180 W, scan speed of 1,000 mm/s, powder layer thickness of 35 µm and hatch spacing of 50 µm ) applied during laser melting can improve the quality of selective laser melting of AlSi10Mg, Social implications It can provide a technological support for 3D printing. Originality/value Based on the analysis of the pore and balling formation mechanisms, the optimal processing parameters have been obtained, which were argon pressure of 1,000 Pa, laser power of 180 W, scan speed of 1,000 mm/s, powder layer thickness of 35 µm and hatch spacing of 50 µm. Then, a near-fully dense sample free of any apparent pores on the cross-sectional microstructure was produced by SLM, wherein the relative density of the as-built samples is larger than 97.5%.


2011 ◽  
Vol 189-193 ◽  
pp. 3668-3671 ◽  
Author(s):  
Qing Song Wei ◽  
Xiao Zhao ◽  
Li Wang ◽  
Rui Di Li ◽  
Jie Liu ◽  
...  

Selective Laser Melting (SLM) can produce high-performance metal parts with complex structures. However, it’s difficult to control the processing parameters, because many factors involves. From the perspective of the molten pool, the study focuses on the effects of processing parameters, including scanning speed, laser power, scanning space, layer thickness, and scanning strategies, on the surface quality, the balling effect, the density of SLM parts, by conducting experiments of single track, single layer and block forming. The results show that the quality of the molten pool is affected by laser power and scanning speed. Scanning drove in the strategy of “jumping and turning”,a smooth surface and a less balling effect will be obtained. The thicker the powder layer is, the lower density will be obtained. The optimal parameters from series of experiments are: laser power of 98W; scanning speed of 90mm/s; scanning space of 0.07mm; layer thickness of 0.1mm; and scanning strategy of “jumping and turning”.


Author(s):  
T Savanth ◽  
Jastej Singh ◽  
JS Gill

A 4kW Yb: YAG solid-state disc laser, with a four-way co-axial cladding head with powder feeding technique was employed to fabricate single-layer clads of Ni-based hardfacing alloy (Colmonoy-5) on medium carbon steel (ASME SA105) substrate by varying the laser processing parameters namely, beam power level (designated as low: 1200 W, medium: 1400 W, and high: 1600 W) and scanning speed (designated as low: 300 mm/min, medium: 400 mm/min, and high: 500mm/min). The laser clads were evaluated for their microstructural characteristics, microhardness, and slurry erosive wear performance with an aim to understand the effect of process parametric variations on their properties. Microstructural analyses of the clads were carried out using an optical microscope and a field-emission scanning electron microscope with attached energy-dispersive X-ray spectrometer supplemented by their Vickers microhardness testing and X-ray diffraction examination. The variation in laser processing parameters exerted a strong influence on the microstructural features of the clads in terms of γ-Ni dendrite size as well as morphology and distribution of various complex precipitates such as Cr-carbides and borides with relatively uniform distribution observed for the clads corresponding to low laser power and high scanning speed. The variation in laser power had relatively a greater influence on microhardness than the scanning speed variation. Micro-cutting, plastic deformation, crater formation besides ploughing away of the softer matrix were the typical fracture features associated with slurry eroded clads when examined under field-emission scanning electron microscope. Results of the slurry erosive wear tests showed that the clads pertaining to low laser power and high scanning speed exhibited superior wear resistance as compared to their counterparts.


2009 ◽  
Vol 628-629 ◽  
pp. 679-684 ◽  
Author(s):  
Hong Yu Wang ◽  
Dun Wen Zuo ◽  
Yong Jun Chen ◽  
H. Ma

The green presetting of powders was performed on the substrate by introducing a novel technique namely squash presetting method, and cladding coatings were prepared by crosscurrent CO2 laser in this work. Based on the concept of laser energy efficiency which being accepted generally by insider, the energy efficiency of squash presetting laser cladding was determined. Meanwhile, effects of processing parameters including specific energy, laser power, scanning speed and spot diameter on energy efficiency were investigated through an orthogonal test. The results show that the energy efficiency increases at first and then decreases with the increase of specific energy, and the energy efficiency is relatively higher when laser specific energy ranged from 90 J/mm2 to100 J/mm2. Among three single-factors, the effects of spot diameter on energy efficiency are most significant, laser power takes second place, and scanning speed comes next. It is considered through analysis that the relationship between energy efficiency and processing parameters is closely related to powders melting and heat-conduction course of squash presetting laser cladding.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 408
Author(s):  
Fangping Yao ◽  
Lijin Fang ◽  
Xiang Chen

In order to improve the resistance to thermal fatigue and wear resistance of H13 hot-working tool steel, a nickel-based composite coating was prepared on its surface by laser cladding technology. The relationship was studied between the main processing parameters and the size of the cladding layer such as height and width. Based on the orthogonal polynomial regression method, the relationships were modeled mathematically between laser power, scanning speed, powder feeding voltage and microhardness. This model was proved to be able to predict the laser power and powder feeding voltage under 1100 Hv microhardness.


Sign in / Sign up

Export Citation Format

Share Document