The Finite Element Analysis of FOPS for the Loader

2011 ◽  
Vol 467-469 ◽  
pp. 1616-1620 ◽  
Author(s):  
Xin Zhang ◽  
Meng Zang ◽  
Xiao Zhe Liu

The finite element analysis method of falling-object protective structure (FOPS) for the loader is presented in this paper. Taking FOPS for CL958 type loader as an example, this paper builds the analysis model in ANSYS, obtains the displacement of the load center and the maximum deformation of FOPS caused by the impact load and proves the safety by the drop test. It provides the theoretical basis and design principle for the optimization design and reliability design of FOPS for the loader.

2001 ◽  
Author(s):  
A. Saigal ◽  
R. Greif ◽  
Y. Duan ◽  
M. A. Zimmerman

Abstract The multiaxial impact behavior of CYCOLAC GPM5500 (ABS glassy polymer) is obtained as a function of impact velocity and temperature from the standard impact test as specified by ASTM D3763. Finite element analysis (FEA) and ABAQUS/Explicit are used to model the impact behavior of the polymer. The generalized “DSGZ” constitutive model, previously developed by the authors and calibrated using low strain rate uniaxial mechanical test data, is extended to the high strain rate regime and used in the finite element analysis. Load-displacement curves from the finite element analysis are compared with the experimental data and agree well up to the maximum impact load (failure). Therefore, the proposed finite element analysis model can be used to predict the multiaxial impact behaviors of polymers at different temperatures and impact velocities.


2013 ◽  
Vol 448-453 ◽  
pp. 3359-3364 ◽  
Author(s):  
Xiao Yu Wang

This paper traverses failure phenomenon about the piston rod of rapping device. Through the ANSYS/ls-dyna software, the finite element analysis was carried out on the piston rod ,force of the impact on the piston rod was taken as the form of triangular pulse load, whose time was lasting 0.05s, and it can get the maximum load in 0.025s. Maximum stress occured at the fillet of the piston rod are obtained. Based on nonlinear finite element method for transient dynamic analysis of the piston rod , analysis results are consistent with the actual conditions, and demonstrates the feasibility of finite element analysis.


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


2014 ◽  
Vol 945-949 ◽  
pp. 1135-1138
Author(s):  
Tao Liang ◽  
Chun Ling Meng ◽  
Yang Li ◽  
Xiu Hua Zhao

The finite element analysis of large air cooling tower was carried out using ABAQUS. On the basis of strength above,8 types of the axial force are analyzed and summarized, find valuable rules, and put forward the further optimization design. So that it can satisfy the strength and stability of air cooling tower, the structure is more reasonable, reduce weight, reduce the cost.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


Author(s):  
Jing Han ◽  
Koetsu Yamazaki ◽  
Sadao Nishiyama ◽  
Ryoichi Itoh

This paper has introduced the finite element analysis (FEA) into the ergonomic design to evaluate the human feelings numerically and objectively, and then into the optimization design of beverage containers considering human factors. In the design of the end of can (the lid of can), experiments and the FEA of indenting vertically the fingertip pulp by a probe and the tab of end have been done to observe force responses and to study feelings in the fingertip. A numerical simulation of finger lifting the tab for opening the can has also been performed, and discomfort in the fingertip has been evaluated numerically to present the finger-accessibility of the tab. The comparison of finger-accessibility between two kinds of tab ring shape designs showed that the tab that may have a larger contact area with the finger is better. In the design of beverage bottles served hot drinks, the FEA of tactile sensation of heat has been performed to evaluate numerically the touch feeling of the finger when holding the hot bottle. The numerical simulations of embossing process have also been performed to evaluate the formability of various rib-shape designs. The optimum design has then been done considering the hot touch feeling as well as the metal sheet formability.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2012 ◽  
Vol 605-607 ◽  
pp. 1427-1430 ◽  
Author(s):  
Fan Zhang ◽  
Zhi Xin Ma ◽  
Shang Gao

Based on the structure and working principle of our giant magnetostrictive actuator (GMA), the properties of the driving magnetic field were researched. A 3-D nonlinear magnetic field model of the GMA was established with the finite element analysis method, and the magnetic field distribution of the GMA was obtained with the software ANSYS. Then the 3-D model helped us to find the effects about the distribution of magnetic field of the GMA from the structure. The 3-D magnetic field finite element analysis model can give us a new tool of GMA design and analysis.


Sign in / Sign up

Export Citation Format

Share Document