Investigation of Hardness of Short Abaca (Musa Textile Nee) Fibre-Reinforced High Impact Polystyrene (HIPS) Composites by Response Surface Methodology

2011 ◽  
Vol 471-472 ◽  
pp. 821-826 ◽  
Author(s):  
E.H. Agung ◽  
S.M. Sapuan ◽  
M.M.H. Megat Ahmad ◽  
Dahlan Khairul Mohd. Zaman ◽  
U. Mustofa

In this paper, the hardness property of abaca (Musa textile Nee) fibre reinforced high impact polystyrene (HIPS) composites with maelic anhydride (MAH) used as coupling agent and styrene butadiene styrene (SBS) copolymer rubber (Cyclo resin) used as impact modifier was investigated using response surface methodology.. The composites were initially fabricated using a rolling machine and finally using a hot press machine to obtain a desired thickness. These samples were then tested for Brinell hardness test. A statistical approach of response surface methodology was used to obtain the interaction between various compositions mentioned above for abaca fibre reinforced HIPS composites. The BHN (Brinell hardness number) was analyzed using response surface methodology (Box Behnken method).

2018 ◽  
Vol 34 (3) ◽  
pp. 117-127 ◽  
Author(s):  
Felipe Bier de Mello ◽  
Sonia Marli Bohrz Nachtigall ◽  
Cleia de Andrade Salles ◽  
Sandro Campos Amico

This research work focused on polypropylene/high-impact polystyrene polymer blends. Since this blend (80/20 in weight) was incompatible, styrene–ethylene–butylene–styrene (SEBS) block copolymer, styrene–butadiene–styrene (SBS), and ethylene vinyl acetate were tested as compatibilizers (2.5 or 7.5 wt% in relation to blend). After blending via extrusion, the compositions were compression molded and their mechanical (tensile and impact), morphological (scanning electron microscopy), and rheological (melt flow index and viscosity) properties were evaluated. Blends containing SBS and 7.5 wt% of SEBS showed a positive effect regarding impact strength, although with a decrease in Young’s modulus and tensile strength. Rheological characteristics were also affected by the compatibilizers.


2021 ◽  
pp. 009524432110153
Author(s):  
Jaber Mirzaei ◽  
Abdolhossein Fereidoon ◽  
Ahmad Ghasemi-Ghalebahman

In this study, the mechanical properties of polypropylene (PP)-based nanocomposites reinforced with graphene nanosheets, kenaf fiber, and polypropylene-grafted maleic anhydride (PP-g-MA) were investigated. Response surface methodology (RSM) based on Box–Behnken design (BBD) was used as the experimental design. The blends fabricated in three levels of parameters include 0, 0.75, and 1.5 wt% graphene nanosheets, 0, 7.5, and 15 wt% kenaf fiber, and 0, 3, and 6 wt% PP-g-MA, prepared by an internal mixer and a hot press machine. The fiber length was 5 mm and was being constant for all samples. Tensile, flexural, and impact tests were conducted to determine the blend properties. The purpose of this research is to achieve the highest mechanical properties of the considered nanocomposite blend. The addition of graphene nanosheets to 1 wt% increased the tensile, flexural, and impact strengths by 16%, 24%, and 19%, respectively, and an addition up to 1.5 wt% reduced them. With further addition of graphene nanosheets until 1.5 wt%, the elastic modulus was increased by 70%. Adding the kenaf fiber up to 15 wt% increased the elastic modulus, tensile, flexural, and impact strength by 24%, 84%, 18%, and 11%, respectively. The addition of PP-g-MA has increased the adhesion, dispersion and compatibility of graphene nanosheets and kenaf fibers with matrix. With 6 wt% PP-g-MA, the tensile strength and elastic modulus were increased by 18% and 75%, respectively. The addition of PP-g-MA to 5 wt% increased the flexural and impact strengths by 10% and 5%, respectively. From the entire experimental data, the optimum values for elastic modulus, as well as, tensile, flexural, and impact strengths in the blends were obtained to be 4 GPa, 33.7896 MPa, 57.6306 MPa, and 100.1421 J/m, respectively. Finally, samples were studied by FE-SEM to check the dispersion of graphene nanosheets, PP-g-MA and kenaf fibers in the polymeric matrix.


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Dwi Wahyuni

High impact polystyrene (HIPS) is the widely used material now, and also for the aerospace material as a communication instrument system and an electrical insulation. In order to produce HIPS, there are a view method which can be executed. In this case, the research is executed by the copolymerization processes of styrene butadiene rubber (SBR) solution in styrene. Variables which influence to the result properties (HIPS) are the SBR to styrene ratio, the solvent (ethyl benzene), the benzoyl peroxide initiator (BPO). The properties of the product are tensile strength, impact strength, softening point, melting point and the hardness. The result showed that the properties of the HIPS product was near of the HIPS high heat. The optimal processes condition was the solvent to the styrene monomer ratio was 0.05492, the SBR to the styrene ratio was 0.1236 and the BPO to the styrene ratio was 0,0003. The properties of the HIPS product were: the impact strength was (519-1215) N per cm, the tensil strength not more than was 106 N per cm, the elongation was (36-54) percent and the hardness was (65-69) shore A. This properties achieved at the mixing polymerization processes 4 scale in 11-12 hours, the early mixing at 4 scale 1 hours, the cutting chain 2 drops.


Sign in / Sign up

Export Citation Format

Share Document