Effect of Stitching Density of Nonwoven Fiber Mat towards Mechanical Properties of Kenaf Reinforced Epoxy Composites Produced by Resin Transfer Moulding (RTM)

2011 ◽  
Vol 471-472 ◽  
pp. 987-992 ◽  
Author(s):  
Muhamad Saifuddin Salim ◽  
Zainal Arifin Mohd Ishak ◽  
Suhail Abdul Hamid

This study will focus on the usage of kenaf as a natural fibre in producing a composite materials consists of epoxy resin by resin transfer moulding (RTM). The variation amount of fiber loading and nonwoven fibre mat condition seems can give significant changes in properties of polymer composite in terms of mechanical aspects. Optimization of stitching density of nonwoven kenaf fibre mat manages to increase the mechanical behaviour. At higher degree of fibre loading, these enhancement properties are more apparent. Depending upon the direction of stitching process in producing nonwoven kenaf fiber mat, the composite obtained exhibit anisotropy behaviour in which the mechanical properties are vary upon the stitching direction of nonwoven mat.

2014 ◽  
Vol 49 (23) ◽  
pp. 2839-2847 ◽  
Author(s):  
Stefan Maenz ◽  
Mike Mühlstädt ◽  
Klaus D Jandt ◽  
Jörg Bossert

2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2019 ◽  
Vol 36 (1) ◽  
pp. 47-62
Author(s):  
AR Mohammed ◽  
MS Nurul Atiqah ◽  
Deepu A Gopakumar ◽  
MR Fazita ◽  
Samsul Rizal ◽  
...  

Natural fiber-reinforced composites gained considerable interest in the scientific community due to their eco-friendly nature, cost-effective, and excellent mechanical properties. Here, we reported a chemical modification of kenaf fiber using propionic anhydride to enhance the compatibility with the epoxy matrix. The incorporation of the modified woven and nonwoven kenaf fibers into the epoxy matrix resulted in the improvement of the thermal and mechanical properties of the composite. The thermal stability of the epoxy composites was enhanced from 403°C to 677°C by incorporating modified woven kenaf fibers into the epoxy matrix. The modified and unmodified woven kenaf fiber-reinforced epoxy composites had a tensile strength of 64.11 and 58.82 MPa, respectively. The modified woven composites had highest flexural strength, which was 89.4 MPa, whereas, for unmodified composites, it was 86.8 MPa. The modified woven fiber-reinforced epoxy composites showed the highest value of flexural modulus, which was 6.0 GPa compared to unmodified woven composites (5.51 GPa). The impact strength of the epoxy composites was enhanced to 9.43 kJ m−2 by the incarnation of modified woven kenaf fibers into epoxy matrix. This study will be an effective platform to design the chemical modification strategy on natural fibers for enhancing the compatibility toward the hydrophobic polymer matrices.


2020 ◽  
Vol 4 (3) ◽  
pp. 110
Author(s):  
Sujan Debnath ◽  
Tan Ke Khieng ◽  
Mahmood Anwar ◽  
Animesh Kumar Basak ◽  
Alokesh Pramanik

Viscoelastic materials, such as natural fibre-reinforced polymer composites, are strain rate sensitive. In the present investigation, the low strain rate sensitivity (0.00028 s−1, 0.00085 s−1 and 0.0017 s−1) of different sized bagasse particle-reinforced (212 µm and 300 µm) epoxy composites was examined using the Weibull analysis method. The filler loading content was optimized at 2 wt.% to achieve better mechanical properties. Based on the experimental results, it was observed that composites with 212 µm filler particles had higher characteristic strengths, more consistent failure strengths and higher energy absorption properties with higher loading speeds, compared to that of 300 µm filler particles. Based on the mathematical models for particle–matrix interactions, improvements in mechanical properties are attributed to proper filler dispersion and a better fibre–matrix interfacial strength.


2017 ◽  
Vol 24 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Varun Mittal ◽  
Shishir Sinha

AbstractThe aim of this research was to study the feasibility of using wheat straw fiber with epoxy resin for developing natural fiber-polymer composites. For this purpose, the epoxy resin was reinforced with 5, 10, 15, 20, and 25 wt.% of the wheat straw fiber with the help of the hand lay-up technique. Further, in order to improve the composite characteristic, wheat straw fibers were treated with three different concentrations of alkali (1%, 3%, and 5%). The mechanical and water absorption properties of the treated fiber composites were characterized and compared with those of untreated fiber-filled epoxy composites. It was observed that the mechanical properties and water resistance were reduced with the increase in wheat straw fiber loading from 5 to 25 wt.%. Among the three levels of alkali treatment, the composite made with 3% alkali-treated fiber exhibited superior mechanical properties than the other untreated and treated fiber composites, which pointed to an efficient fiber-matrix adhesion. The scanning electron microscope was used to observe the surface features of the wheat straw fiber.


2011 ◽  
Vol 264-265 ◽  
pp. 743-747 ◽  
Author(s):  
Hazleen Anuar ◽  
N.A. Hassan ◽  
F. Mohd Fauzey

Thermoplastic Elastomer (TPE) composite reinforced with Hibiscus cannabinus, L fiber (kenaf fiber, KF) was prepared via melt blending method using internal mixer at temperature 180°C, screw rotational speed at 40rpm for 10 min. TPE matrix is a blend of polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) at a ratio of 70:30. The optimum fiber loading were investigated from 0% to 20% by volume. The effect of coupling agent maleic anhydride polypropylene (MAPP) on the TPE composite has been investigated. The result shown that, with increasing the kenaf fiber content gradually increased the tensile strength and flexural strength for both treated and untreated PP/EPDM-KF composite. However, at 20% of kenaf fiber loading, it showed decreasing in impact strength due to brittleness of the samples. From the scanning electron micrograph (SEM) it has shown that the composite, with compatibilizer promotes better interaction between TPE and kenaf fiber.


Sign in / Sign up

Export Citation Format

Share Document