scholarly journals Strain Rate Sensitivity of Epoxy Composites Reinforced with Varied Sizes of Bagasse Particles

2020 ◽  
Vol 4 (3) ◽  
pp. 110
Author(s):  
Sujan Debnath ◽  
Tan Ke Khieng ◽  
Mahmood Anwar ◽  
Animesh Kumar Basak ◽  
Alokesh Pramanik

Viscoelastic materials, such as natural fibre-reinforced polymer composites, are strain rate sensitive. In the present investigation, the low strain rate sensitivity (0.00028 s−1, 0.00085 s−1 and 0.0017 s−1) of different sized bagasse particle-reinforced (212 µm and 300 µm) epoxy composites was examined using the Weibull analysis method. The filler loading content was optimized at 2 wt.% to achieve better mechanical properties. Based on the experimental results, it was observed that composites with 212 µm filler particles had higher characteristic strengths, more consistent failure strengths and higher energy absorption properties with higher loading speeds, compared to that of 300 µm filler particles. Based on the mathematical models for particle–matrix interactions, improvements in mechanical properties are attributed to proper filler dispersion and a better fibre–matrix interfacial strength.

2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2105 ◽  
Author(s):  
Alon Ratner ◽  
Richard Beaumont ◽  
Iain Masters

Strain rate sensitivity has been widely recognized as a significant feature of the dynamic mechanical properties of lithium-ion cells, which are important for their accurate representation in automotive crash simulations. This research sought to improve the precision with which dynamic mechanical properties can be determined from drop tower impact testing through the use of a diaphragm to minimize transient shock loads and to constrain off-axis motion of the indenter, specialized impact absorbers to reduce noise, and observation of displacement with a high speed camera. Inert pouch cells showed strain rate sensitivity in an increased stiffness during impact tests that was consistent with the poromechanical interaction of the porous structure of the jellyroll with the liquid electrolyte. The impact behaviour of the inert pouch cells was similar to that of an Expanded Polypropylene foam (EPP), with the exception that the inert pouch cells did not show hysteretic recovery under the weight of the indenter. This suggests that the dynamic mechanical behaviour of the inert pouch cells is analogous to a highly damped foam.


2001 ◽  
Author(s):  
Paul S. Robinson ◽  
Tony W. Lin ◽  
Paul R. Reynolds ◽  
Kathleen A. Derwin ◽  
Renato V. Iozzo ◽  
...  

Abstract Little is known about the contributions of specific extracellular matrix components of tendon to the tissue’s mechanical properties. Type I collagen, given its abundance and association into long fibrils, is thought to dominate the elastic properties of tendon. Proteoglycans (PGs) are believed to provide elasticity through their potential role in transferring stress between discontinuous fibrils, as well as viscoelasticity via their interaction with water. Previous studies suggest relationships between collagen or PGs and tissue mechanics [1,2]. However, no study to date has isolated the contributions that distinct tendon components make to the elastic and viscoelastic properties of tendon. Recently, transgenic mice with prescribed mutations or deletions of various genes for specific tendon constituents have become available. In this study, we use transgenic mice as a tool to investigate the contributions of tendon components to tendon function based on a previously described approach [3]. In particular, we compare the strain rate sensitivity among fascicles from the tails of mice described in Table 1. We hypothesize that (a) fascicles with alterations in type I collagen (C1TJ8 and C1M8) will have different elastic properties but no difference in strain rate sensitivity than age-matched controls (CTL8), and (b) fascicles with alterations in proteoglycan (DKO8 and CTL3 [4]) will have different elastic properties and different strain rate sensitivity than CTL8 fascicles.


Author(s):  
Leila Ladani ◽  
Jafar Razmi ◽  
Soud Farhan Choudhury

Anisotropic mechanical behavior is an inherent characteristic of parts produced using additive manufacturing (AM) techniques in which parts are built layer by layer. It is expected that in-plane and out-of-plane properties be different in these parts. E-beam fabrication is not an exception to this. It is, however, desirable to keep this degree of anisotropy to a minimum level and be able to produce parts with comparable mechanical strength in both in-plane and out-of-plane directions. In this manuscript, this degree of anisotropy is investigated for Ti6Al4V parts produced using this technique through tensile testing of parts built in different orientations. Mechanical characteristics such as Young's modulus, yield strength (YS), ultimate tensile strength (UTS), and ductility are evaluated. The strain rate effect on mechanical behavior, namely, strength and ductility, is also investigated by testing the material at a range of strain rates from 10−2 to 10−4 s−1. Local mechanical properties were extracted using nanoindentation technique and compared against global values (average values obtained by tensile tests). Although the properties obtained in this experiment were comparable with literature findings, test results showed that in-plane properties, elastic modulus, YS, and UTS are significantly higher than out-of-plane properties. This could be an indication of defects in between layers or imperfect bonding of the layers. Strong positive strain rate sensitivity was observed in out-of-plane direction. The strain rate sensitivity evaluation did not show strain rate dependency for in-plane directions. Local mechanical properties obtained through nanoindentation confirmed the findings of tensile test and also showed variation of properties caused by geometry.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1063
Author(s):  
Mingcan Li

The influence of isothermal annealing on the strain rate sensitivity (SRS) of a Zr-based bulk metallic glass (BMG) was investigated by nanoindentation. A more positive SRS is observed with a decrease in the content of the free volume (FV) of the sample. Furthermore, the SRS becomes nearly constant with increasing annealing time when the FV is annealed out. By taking into consideration the FV-assisted activation and combination of the shear transformation zones (STZs), the underlying mechanism is well understood. The current work may offer useful insights into the correlation between the microstructure and mechanical properties of BMGs.


Polymers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 149
Author(s):  
Wilco M. H. Verbeeten ◽  
Rob J. Arnold-Bik ◽  
Miriam Lorenzo-Bañuelos

The strain-rate sensitivity of the yield stress for Acrylonitrile-Butadiene-Styrene (ABS) tensile samples processed via material extrusion additive manufacturing (ME-AM) was investigated. Such specimens show molecular orientation and interstitial voids that affect the mechanical properties. Apparent densities were measured to compensate for the interstitial voids. Three different printing speeds were used to generate ME-AM tensile test samples with different molecular orientation. Printing velocities influenced molecular orientation and stretch, as determined from thermal shrinkage measurements. Likewise, infill velocity affected the strain-rate dependence of the yield stress. The ABS material manifests thermorheollogically simple behavior that can correctly be described by an Eyring flow rule. The changing activation volume, as a result of a varying print velocity, scales linearly with the molecular orientation, as captured in an estimated processing-induced pre-strain. Therefore, it is suggested that ME-AM processed ABS shows a deformation-dependent activation volume. This paper can be seen as initial work that can help to improve quantitative predictive numerical tools for ME-AM, taking into account the effects that the processing step has on the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document