Non-Linear Behaviour of Base-Isolated Building Supported on Flexible Soil under Damaging Earthquakes

2011 ◽  
Vol 488-489 ◽  
pp. 142-145
Author(s):  
Sayed Mahmoud ◽  
Per Erik Austrell ◽  
Robert Jankowski

Seismic isolation is a strategy to reduce damage of structures exposed to devastating earthquake excitations. Isolation systems, applied at the base of buildings, lower the fundamental frequency of the structure below the range of dominant frequencies of the ground motion as well as allow to dissipate more energy during structural vibrations. The effectiveness of the base-isolated buildings in damage reduction has been confirmed numerically for the models of structures with fixed supports. The aim of the present paper is to show the results of the non-linear analysis of the response of a base-isolated building supported on soft soil incorporating soil-structure interaction. The detailed study has been conducted for the building equipped with high damping rubber bearings used as isolation devices. The results of numerical simulations demonstrate that soil flexibility has a significant influence on the behaviour of isolated base of the structure. Considering the flexibility of soil significantly affects the rigid superstructure response lowering its potential to reduce structural damage.

2012 ◽  
Vol 594-597 ◽  
pp. 1788-1799 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present paper the dynamic nonlinear analysis for a 3D base isolated structure is illustrated. A base isolated reinforced concrete building is designed and verified according to the European seismic codes such that the superstructure remains almost completely elastic and the nonlinear elements are localized only in the base isolation system. Nonlinear hysteretic models have been adopted to reproduce the cyclic behavior of the isolators. Two different base isolation systems are considered and their performances are compared for evaluating the behaviour of a base isolated building, highly irregular in plan, in presence of a seismic excitation defined with recorded accelerograms which characterize the bi-directional ground motions. The isolation system has been realized with a combination in parallel of elastomeric bearings and sliding devices. In the first analyzed isolation system we have used the High Damping Rubber Bearings (HDRB) and in the second analyzed isolation system we have used the Lead Rubber Bearings (LRB). Finally a comparative analysis between the base isolated structure with hybrid base isolation systems and the conventional fixed base structure is detailed.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Fabrizio Paolacci

This paper deals with the effectiveness of two isolation systems for the seismic protection of elevated steel storage tanks. In particular, the performance of high damping rubber bearings (HDRB) and friction pendulum isolators (FPS) has been analyzed. As case study, an emblematic example of elevated tanks collapsed during the Koaceli Earthquake in 1999 at Habas pharmaceutics plant in Turkey is considered. A time-history analysis conducted using lumped mass models demonstrates the high demand in terms of base shear required to the support columns and their inevitable collapse due to the insufficient shear strength. A proper design of HDRB and FPS isolator according to the EN1998 and a complete nonlinear analysis of the isolated tanks proved the high effectiveness of both isolation systems in reducing the response of the case tank. Actually, the stability conditions imposed by the code and a reduced level of convective base shear obtained with the second isolation typology suggests the use of FPS isolators rather than HDRB devices.


Author(s):  
Yasuhiro Kasahara ◽  
Shigenobu Suzuki ◽  
Takashi Kikuchi

Hysteretic restoring force characteristics — shear stiffness, equivalent damping ratio, and ultimate properties — of seismic isolation bearings are significantly affected by compressive stress. In this study, dependence of shear properties of high-damping rubber bearings (HDR) on the compressive stress σ and secondary shape factor S2 was studied by dynamic loading test with scaled-model and static loading test with full-scale isolators. The results highlighted the high compressive stress dependency on restoring force characteristics of HDR with the isolator of relatively small S2. It is concluded that large S2 is desired when isolators are designed for high compressive stress. The applicability of HDR under high compressive stress was experimentally verified.


Seismic isolation is one of the most efficient techniques to protect structures against earthquakes. Rubber bearings are suitable for low-rise and medium-rise buildings due to its durability and easy fabrication. This paper presents the hori-zontal response of a six-storey base-isolated building using high damping rubber bearings (HDRB) under two ground motions of earthquakes as types I and II in JRA (2002) by finite element analysis. In this analysis, these bearings are mod-elled by the bilinear hysteretic model which is indicated in JRA and AASHTO. Comparison of horizontal response including base shear force and roof level acceleration between the two cases: base-isolated building and fixed-base building is carried out to evaluate the effectiveness of the use of HDRB on the protection of buildings from earthquakes. The numerical results show that the peak value of roof floor acceleration of the fixed-base building is two times higher than that of the base-isolated building, and the floor accelerations depend on the peak values of ground acceleration. In addition, the step-by-step design procedure for deter-mining the size of HDRBs used for buildings is also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document