Methodological Implications on Quantitative Studies of Cytocompatibility in Direct Contact with Bioceramic Surfaces

2011 ◽  
Vol 493-494 ◽  
pp. 325-330 ◽  
Author(s):  
J.A. Cortês ◽  
Elena Mavropoulos ◽  
Moema Hausen ◽  
Alexandre Rossi ◽  
J.M. Granjeiro ◽  
...  

Cell adhesion, proliferation and differentiation are important specific parameters to be evaluated on biocompatibility studies of candidate biomaterials for clinical applications. Several different methodologies have been employed to study, both qualitative and quantitatively, the direct interactions of ceramic materials with cultured mammal and human cells. However, while quantitatively evaluating cell density, viability and metabolic responses to test materials, several methodological challenges may arise, either by impairing the use of some widely applied techniques, or by generating false or conflicting results. In this work, we tested the inherent interference of different representative calcium phosphate ceramic surfaces (stoichiometric dense and porous hydroxyapatite (HA) and cation-substituted apatite tablets) on different tests for quantitative evaluation of osteoblast adhesion and metabolism, either based on direct cell counting after trypsinization, colorimetric assays (XTT, Neutral Red and Crystal Violet) and fluorescence microscopy. Cell adhesion estimation after trypsinization was highly dependent on the time of treatment, and the group with the highest level of estimated adhesion was inverted from 5 to 20 minutes of exposition to trypsin. Both dense and porous HA samples presented high levels of background adsorption of the Crystal Violet dye, impairing cell detection. HA surfaces also were able to adsorb high levels of fluorescent dyes (DAPI and phalloidin-TRITC), generating backgrounds which, in the case of porous HA, impaired cell detection and counting by image processing software (Image Pro Plus 6.0). We conclude that the choice for the most suitable method for cell detection and estimation is highly dependent on very specific characteristics of the studied material, and methodological adaptations on well established protocols must always be carefully taken on consideration.

2020 ◽  
Vol 10 (18) ◽  
pp. 6187
Author(s):  
Leonardo Rundo ◽  
Andrea Tangherloni ◽  
Darren R. Tyson ◽  
Riccardo Betta ◽  
Carmelo Militello ◽  
...  

Advances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a 3.7× speed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of 76.84 and 88.64 and the Pearson coefficients of 0.99 and 0.96, calculated against the manual cell counting, on the two tested datasets.


2020 ◽  
Author(s):  
Leonardo Rundo ◽  
Andrea Tangherloni ◽  
Darren R. Tyson ◽  
Riccardo Betta ◽  
Carmelo Militello ◽  
...  

AbstractAdvances in microscopy imaging technologies have enabled the visualization of live-cell dynamic processes using time-lapse microscopy imaging. However, modern methods exhibit several limitations related to the training phases and to time constraints, hindering their application in the laboratory practice. In this work, we present a novel method, named Automated Cell Detection and Counting (ACDC), designed for activity detection of fluorescent labeled cell nuclei in time-lapse microscopy. ACDC overcomes the limitations of the literature methods, by first applying bilateral filtering on the original image to smooth the input cell images while preserving edge sharpness, and then by exploiting the watershed transform and morphological filtering. Moreover, ACDC represents a feasible solution for the laboratory practice, as it can leverage multi-core architectures in computer clusters to efficiently handle large-scale imaging datasets. Indeed, our Parent-Workers implementation of ACDC allows to obtain up to a 3.7× speed-up compared to the sequential counterpart. ACDC was tested on two distinct cell imaging datasets to assess its accuracy and effectiveness on images with different characteristics. We achieved an accurate cell-count and nuclei segmentation without relying on large-scale annotated datasets, a result confirmed by the average Dice Similarity Coefficients of 76.84 and 88.64 and the Pearson coefficients of 0.99 and 0.96, calculated against the manual cell counting, on the two tested datasets.


2009 ◽  
Vol 297 (2) ◽  
pp. R243-R247 ◽  
Author(s):  
Johannes P. Hofgaard ◽  
Sarah Mollerup ◽  
Niels-Henrik Holstein-Rathlou ◽  
Morten Schak Nielsen

Intercellular communication via gap junction channels can be quantified by several methods based on diffusion of fluorescent dyes or metabolites. Given the variation in intercellular coupling of cells, even under untreated control conditions, it is of essence to quantify the coupling between numerous cells to obtain reliable estimates of metabolic coupling. Quantification is often based on manual counting of fluorescent cells, which is time consuming and may include some degree of subjectivity. In this report, we introduce a technique based on digital image analysis, and the software for the analysis is presented together with a detailed protocol in the online supplemental material ( http://bmi.ku.dk/matlab_program/ ). Fluorescent dye was introduced in connexin 43-expressing C6 glioma cells by in situ electroporation, and fluorescence intensity was measured in the electroporated cells and in cells receiving dye by intercellular diffusion. The analysis performed is semiautomatic, and comparison with traditional cell counting shows that this method reliably determines the effect of uncoupling by several interventions. This new method of analysis yields a rapid and objective quantification process with a high degree of reproducibility.


2001 ◽  
Vol 276 (28) ◽  
pp. 26516-26525 ◽  
Author(s):  
Timothy R. Carlson ◽  
Yuezhong Feng ◽  
Peter C. Maisonpierre ◽  
Milan Mrksich ◽  
Alex O. Morla
Keyword(s):  

2018 ◽  
Vol 286 ◽  
pp. 205-211 ◽  
Author(s):  
Rajesh Seenivasan ◽  
Jay W. Warrick ◽  
Carlos I. Rodriguez ◽  
William Mattison ◽  
David J. Beebe ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1503 ◽  
Author(s):  
Hintermann ◽  
Christen

Fibrogenesis is a progressive scarring event resulting from disrupted regular wound healing due to repeated tissue injury and can end in organ failure, like in liver cirrhosis. The protagonists in this process, either liver-resident cells or patrolling leukocytes attracted to the site of tissue damage, interact with each other by soluble factors but also by direct cell–cell contact mediated by cell adhesion molecules. Since cell adhesion molecules also support binding to the extracellular matrix, they represent excellent biosensors, which allow cells to modulate their behavior based on changes in the surrounding microenvironment. In this review, we focus on selectins, cadherins, integrins and members of the immunoglobulin superfamily of adhesion molecules as well as some non-classical cell adhesion molecules in the context of hepatic fibrosis. We describe their liver-specific contributions to leukocyte recruitment, cell differentiation and survival, matrix remodeling or angiogenesis and touch on their suitability as targets in antifibrotic therapies.


Sign in / Sign up

Export Citation Format

Share Document