Clinical Success of IPS Empress II Inlays/Onlays

2011 ◽  
Vol 493-494 ◽  
pp. 620-625
Author(s):  
Funda Yanıkoğlu ◽  
Gürol Özyöney ◽  
Nuran Özyöney ◽  
Dilek Tağtekin ◽  
Hesna Öveçoğlu ◽  
...  

For the dental restorations, ceramic materials have increasing popularities because of their biocompatibility and superior esthetics. IPS Empress which is leucite-reinforced glass ceramic is one of the most popular ceramics. IPS Empress II was developed in following years which is stronger than IPS Empress. In the dental applications some problems occur about ceramic restorations. Hence,this study was performed to examine the six-year clinical performance of IPS Empress II ceramic onlay and inlay restorations.

2008 ◽  
Vol 396-398 ◽  
pp. 153-156 ◽  
Author(s):  
Xanthippi Chatzistavrou ◽  
E. Hatzistavrou ◽  
Nikolaos Kantiranis ◽  
Lambrini Papadopoulou ◽  
Eleana Kontonasaki ◽  
...  

The aim of this study was the fabrication using a sol-gel technique of a new glass-ceramic with potential use in dental applications. The characterization of the composition and microstructural properties of the produced material confirmed the similarity between the new sol-gel derived glass-ceramic and a commercial leucite based fluorapatite dental glass-ceramic. The produced material has potential application in dental restorations and it is expected to exhibit better control of composition, microstructure and properties due to the intrinsic advantages of the sol-gel preparation method.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Sapna Rani ◽  
Jyoti Devi ◽  
Chandan Jain ◽  
Parul Mutneja ◽  
Mahesh Verma

Digitalization has become part and parcel of contemporary prosthodontics with the probability of most of the procedures being based on the digital techniques in the near future. This digital revolution started in the latter half of the 20th century by converting analog objects/signals into digital bits and bytes. Recent developments in all-ceramic materials and systems of computer-aided designing and computer-aided manufacturing (CAD/CAM), copy milling, and so forth offer excellent esthetics and superb biocompatibility. Copy milling system for ceramics enables milling of the zirconia cores of all-ceramic restorations precisely and also if this system is properly used the procedure for fabricating all-ceramic restorations can be substantially simplified. This case report presents fabrication of all-ceramic Maryland Bridge and post-core with a copy milling system for esthetics and preservation of integrity of tooth. For both of the patients, the use of biologic, all-ceramic, copy-milled restorations resulted in clinical success and recovered function and esthetics.


2015 ◽  
Vol 40 (2) ◽  
pp. 211-217 ◽  
Author(s):  
EM Bakeman ◽  
N Rego ◽  
Y Chaiyabutr ◽  
JC Kois

SUMMARY This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p<0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p<0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.


2019 ◽  
Vol 8 (3) ◽  
pp. 28-33
Author(s):  
Kasim Butt ◽  
Naren Thanabalan ◽  
Khawer Ayub ◽  
George Bourne

With increasing patient expectation for aesthetic dental restorations, there has been a drive towards developing ceramic materials to meet this expectation. Multiple ceramic systems have been introduced over the past four decades with considerable advances in material properties. Survival rates of all-ceramic crowns differ by type of ceramic used, fabrication method and clinical indication. Zirconia and lithium disilicate are the most commonly used contemporary ceramic materials in dentistry. Survival data for these types of restorations appears to be promising; however, there is a lack of high-quality long-term clinical data on the success of these restorations. In the absence of robust longitudinal clinical research, laboratory studies have provided some useful information on the performance of ceramic restorations. Further high quality long-term clinical studies are needed to inform us of modes of failure of these restorations and the range of clinical circumstances in which each type of ceramic restoration may be used.


1996 ◽  
Vol 7 (2) ◽  
pp. 134-143 ◽  
Author(s):  
Isabelle L. Denry

For the last ten years, the application of high-technology processes to dental ceramics allowed for the development of new materials such as heat-pressed, injection-molded, and slip-cast ceramics and glass-ceramics. The purpose of the present paper is to review advances in new materials and processes available for making all-ceramic dental restorations. Concepts on the structure and strengthening mechanisms of dental ceramics are provided. Major developments in materials for all-ceramic restorations are addressed. These advances include improved processing techniques and greater mechanical properties. An overview of the processing techniques available for all-ceramic materials is given, including sintering, casting, machining, slip-casting, and heat-pressing. The most recent ceramic materials are reviewed with respect to their principal crystalline phases, including leucite, alumina, forsterite, zirconia, mica, hydroxyapatite, lithium disilicate, sanidine, and spinel. Finally, a summary of flexural strength data available for all-ceramic materials is included.


2016 ◽  
Vol 10 (04) ◽  
pp. 583-588 ◽  
Author(s):  
Haroon Rashid ◽  
Zeeshan Sheikh ◽  
Syed Misbahuddin ◽  
Murtaza Raza Kazmi ◽  
Sameer Qureshi ◽  
...  

ABSTRACTTooth wear is a process that is usually a result of tooth to tooth and/or tooth and restoration contact. The process of wear essentially becomes accelerated by the introduction of restorations inside the oral cavity, especially in case of opposing ceramic restorations. The newest materials have vastly contributed toward the interest in esthetic dental restorations and have been extensively studied in laboratories. However, despite the recent technological advancements, there has not been a valid in vivo method of evaluation involving clinical wear caused due to ceramics upon restored teeth and natural dentition. The aim of this paper is to review the latest advancements in all-ceramic materials, and their effect on the wear of opposing dentition. The descriptive review has been written after a thorough MEDLINE/PubMed search by the authors. It is imperative that clinicians are aware of recent advancements and that they should always consider the type of ceramic restorative materials used to maintain a stable occlusal relation. The ceramic restorations should be adequately finished and polished after the chair-side adjustment process of occlusal surfaces.


2016 ◽  
Author(s):  
Ling Yin ◽  
Abdur-Rasheed Alao ◽  
Xiao-Fei Song ◽  
Richard Stoll

Dental caries is a ubiquitous disease and nearly 100% of the population is affected worldwide. Consequently, reliable dental restorations are in high demand. More and more patients expect and request esthetics and biosafety, and desire metal-free prostheses. Both biocompatible and esthetic ceramics and digital processing of prostheses have been developed to meet these demands. This paper reviews the current status of abrasive machining involved in affordable digital dental ceramic restorations with regard to dental ceramic materials, dental CAD/CAM systems, and extra/intraoral dental handpiece adjustments. It highlights the importance and challenge of abrasive machining technologies in manufacturing of affordable and reliable dental restorations with cutting-edge materials.


2016 ◽  
Vol 702 ◽  
pp. 28-31 ◽  
Author(s):  
Silvia Barbi ◽  
Monia Montorsi ◽  
Consuelo Mugoni ◽  
Cristina Siligardi

Glass ceramic materials are widely used in dental application because of their strong similarity with natural teeth. In this study LAS glass ceramic/glass materials were prepared by glazing processing and characterized in terms of mechanical flexural strength. The selected glass ceramic support derives from an industrial process. Different glasses were applied to the glass ceramic support in order to investigate firstly their effect on the glass ceramic/glass interface and secondly how these structural changes are correlated to the flexural strength property. Different thermal cycles were applied to the glass ceramic in order to promote the increasing of mechanical flexural strength. Preliminary results clearly points out that the application of a glass on the support leads to the decrease of the flexural strength if compared to the materials without any coating applied.


Sign in / Sign up

Export Citation Format

Share Document