Nano-Micro Geometric Modeling Using Microscopic Image

2012 ◽  
Vol 523-524 ◽  
pp. 345-349 ◽  
Author(s):  
Shin Usuki ◽  
Kenjiro Takai Miura

In recent years, there are a lot of active researches on nano-micro manufacturing and metrology, since not only industrial fields but also medical fields require higher accuracy with respect to miniaturizing size of the target. However, we cannot make an effective use of three dimensional measurement data for the nano-micro design and manufacturing due to a wide variety of instruments, resolutions, and noises. In fact, the nano-micro geometric modeling is at an early stage of development in spite of its importance for the next generation. In order to find a solution to this problem, we propose to combine the multi-resolution processing with the microscopic images for high speed and non-destructive geometric modeling as well as for the homogeneous modeling from micro features to macro ones. This research includes measurement data tiling between different instruments, high resolution optical microscopic imaging, focus judgment of three dimensional microscopic data, and large scale point crowd processing. These built models are potentially applied to in-line inspections and numerical simulations. Therefore, the nano-micro geometric modeling contribute to further developments of ultra precise manufacturing and the biotechnology.

Author(s):  
R. Abe ◽  
K. Hamada ◽  
N. Hirata ◽  
R. Tamura ◽  
N. Nishi

As well as the BIM of quality management in the construction industry, demand for quality management of the manufacturing process of the member is higher in shipbuilding field. The time series of three-dimensional deformation of the each process, and are accurately be grasped strongly demanded. In this study, we focused on the shipbuilding field, will be examined three-dimensional measurement method. The shipyard, since a large equipment and components are intricately arranged in a limited space, the installation of the measuring equipment and the target is limited. There is also the element to be measured is moved in each process, the establishment of the reference point for time series comparison is necessary to devise. In this paper will be discussed method for measuring the welding deformation in time series by using a total station. In particular, by using a plurality of measurement data obtained from this approach and evaluated the amount of deformation of each process.


2021 ◽  
Vol 13 (5) ◽  
pp. 2950
Author(s):  
Su-Kyung Sung ◽  
Eun-Seok Lee ◽  
Byeong-Seok Shin

Climate change increases the frequency of localized heavy rains and typhoons. As a result, mountain disasters, such as landslides and earthworks, continue to occur, causing damage to roads and residential areas downstream. Moreover, large-scale civil engineering works, including dam construction, cause rapid changes in the terrain, which harm the stability of residential areas. Disasters, such as landslides and earthenware, occur extensively, and there are limitations in the field of investigation; thus, there are many studies being conducted to model terrain geometrically and to observe changes in terrain according to external factors. However, conventional topography methods are expressed in a way that can only be interpreted by people with specialized knowledge. Therefore, there is a lack of consideration for three-dimensional visualization that helps non-experts understand. We need a way to express changes in terrain in real time and to make it intuitive for non-experts to understand. In conventional height-based terrain modeling and simulation, there is a problem in which some of the sampled data are irregularly distorted and do not show the exact terrain shape. The proposed method utilizes a hierarchical vertex cohesion map to correct inaccurately modeled terrain caused by uniform height sampling, and to compensate for geometric errors using Hausdorff distances, while not considering only the elevation difference of the terrain. The mesh reconstruction, which triangulates the three-vertex placed at each location and makes it the smallest unit of 3D model data, can be done at high speed on graphics processing units (GPUs). Our experiments confirm that it is possible to express changes in terrain accurately and quickly compared with existing methods. These functions can improve the sustainability of residential spaces by predicting the damage caused by mountainous disasters or civil engineering works around the city and make it easy for non-experts to understand.


2015 ◽  
Vol 24 (1) ◽  
pp. 013001 ◽  
Author(s):  
Suqin Bai ◽  
Jinlong Shi ◽  
Qiang Qian ◽  
Linbin Pang ◽  
Xin Shu

2017 ◽  
Vol 25 (3) ◽  
pp. 788-810 ◽  
Author(s):  
Julian Hamm ◽  
Arthur G Money ◽  
Anita Atwal ◽  
Gheorghita Ghinea

The assistive equipment provision process is routinely carried out with patients to mitigate fall risk factors via the fitment of assistive equipment within the home. However, currently, over 50% of assistive equipment is abandoned by the patients due to poor fit between the patient and the assistive equipment. This paper explores clinician perceptions of an early stage three-dimensional measurement aid prototype, which provides enhanced assistive equipment provision process guidance to clinicians. Ten occupational therapists trialled the three-dimensional measurement aid prototype application; think-aloud and semi-structured interview data was collected. Usability was measured with the System Usability Scale. Participants scored three-dimensional measurement aid prototype as ‘excellent’ and agreed strongly with items relating to the usability and learnability of the application. The qualitative analysis identified opportunities for improving existing practice, including, improved interpretation/recording measurements; enhanced collaborative practice within the assistive equipment provision process. Future research is needed to determine the clinical utility of this application compared with two-dimensional counterpart paper-based guidance leaflets.


2009 ◽  
Vol 622 ◽  
pp. 33-62 ◽  
Author(s):  
R. A. HUMBLE ◽  
G. E. ELSINGA ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An experimental study is carried out to investigate the three-dimensional instantaneous structure of an incident shock wave/turbulent boundary layer interaction at Mach 2.1 using tomographic particle image velocimetry. Large-scale coherent motions within the incoming boundary layer are observed, in the form of three-dimensional streamwise-elongated regions of relatively low- and high-speed fluid, similar to what has been reported in other supersonic boundary layers. Three-dimensional vortical structures are found to be associated with the low-speed regions, in a way that can be explained by the hairpin packet model. The instantaneous reflected shock wave pattern is observed to conform to the low- and high-speed regions as they enter the interaction, and its organization may be qualitatively decomposed into streamwise translation and spanwise rippling patterns, in agreement with what has been observed in direct numerical simulations. The results are used to construct a conceptual model of the three-dimensional unsteady flow organization of the interaction.


2010 ◽  
Vol 14 (10) ◽  
pp. 1989-2001 ◽  
Author(s):  
H. Murakami ◽  
X. Chen ◽  
M. S. Hahn ◽  
Y. Liu ◽  
M. L. Rockhold ◽  
...  

Abstract. This study presents a stochastic, three-dimensional characterization of a heterogeneous hydraulic conductivity field within the Hanford 300 Area, Washington, USA, by assimilating large-scale, constant-rate injection test data with small-scale, three-dimensional electromagnetic borehole flowmeter (EBF) measurement data. We first inverted the injection test data to estimate the transmissivity field, using zeroth-order temporal moments of pressure buildup curves. We applied a newly developed Bayesian geostatistical inversion framework, the method of anchored distributions (MAD), to obtain a joint posterior distribution of geostatistical parameters and local log-transmissivities at multiple locations. The unique aspects of MAD that make it suitable for this purpose are its ability to integrate multi-scale, multi-type data within a Bayesian framework and to compute a nonparametric posterior distribution. After we combined the distribution of transmissivities with depth-discrete relative-conductivity profile from the EBF data, we inferred the three-dimensional geostatistical parameters of the log-conductivity field, using the Bayesian model-based geostatistics. Such consistent use of the Bayesian approach throughout the procedure enabled us to systematically incorporate data uncertainty into the final posterior distribution. The method was tested in a synthetic study and validated using the actual data that was not part of the estimation. Results showed broader and skewed posterior distributions of geostatistical parameters except for the mean, which suggests the importance of inferring the entire distribution to quantify the parameter uncertainty.


2013 ◽  
Vol 336-338 ◽  
pp. 172-179 ◽  
Author(s):  
Guo Qing Jiang ◽  
Qing Li ◽  
Yang Ming Xie

Measurement of underground displacement is of great significance. Now, there are various measuring methods to detect underground displacement. But each of them has its own scope of application and limitation. According to actual demand, this paper puts forward an integrated sensor which utilize three-dimensional measurement method to supervise the underground displacement. This sensor can not only measure the size and direction of the displacement, but also can achieve real-time measurement data. Method and realization of displacement measurement are introduced, as well as the experimental data. Comparing with other several measurement methods, three-dimensional measurement method is much better than the normal ones, including high data transmission speed, high sensitivity, strong practicability etc.


2012 ◽  
Vol 82 (7) ◽  
pp. 725-743 ◽  
Author(s):  
Kadir Bilisik

The aim of this study is to review three-dimensional (3D) fabrics and a critical review is especially provided on the development of multiaxis 3D woven preform structures and techniques. 3D preforms are classified based on various parameters depending on the fiber sets, fiber orientation and interlacements, and micro–meso unit cells and macro geometry. Biaxial and triaxial two-dimensional (2D) fabrics have been widely used as structural composite parts in various technical areas. However, they suffer delamination between their layers due to the lack of fibers. 3D woven fabrics have multiple layers and no delamination due to the presence of Z-fibers. However, the 3D woven fabrics have low in-plane properties. Multiaxis 3D knitted fabrics have no delamination and their in-plane properties are enhanced due to the ±bias yarn layers. However, they have limitations regarding multiple layering and layer sequences. Multiaxis 3D woven fabrics have multiple layers and no delamination due to Z-fibers and in-plane properties enhanced due to the ±bias yarn layers. Also, the layer sequence can be arranged based on end-use requirements. However, the multiaxis 3D weaving technique is at an early stage of development and needs to be fully automated. This will be a future technological challenge in the area of multiaxis 3D weaving.


Sign in / Sign up

Export Citation Format

Share Document