Computational Characterization of Micro-To Macroscopic Deformation Behavior of Double Network Hydrogel

2012 ◽  
Vol 525-526 ◽  
pp. 193-196 ◽  
Author(s):  
Isamu Riku ◽  
Koji Mimura

To take advantage of the toughness mechanism of DN gels and explore the possibility for engineering application as the structural member, the information on the mechanical behaviour of DN gels under various loading conditions is indispensable. Therefore, in this paper, we at first constitute a model of DN gel by paralleling a slider element with a nonlinear rubber elasticity spring element based on the nonaffine molecular chain network model, where each element represents the first and the second network of DN gel respectively. The theoretical stress-strain relation of this model shows a strain softening and subsequent strain hardening response, which has been considered as an agent of the propagation of the necking during the simple tension of glassy polymer. Continuously, based on this model, we propose a constitutive equation for DN gel and a three-dimensional simple tension simulation is performed. The computational results show that the propagation of the necking together with the macroscopic mechanical response of DN gel can be reproduced by the proposed model very well.

Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2017 ◽  
Vol 10 (06) ◽  
pp. 1742005 ◽  
Author(s):  
Keyton Clayson ◽  
Elias Pavlatos ◽  
Yanhui Ma ◽  
Jun Liu

The three-dimensional (3D) mechanical response of the cornea to intraocular pressure (IOP) elevation has not been previously reported. In this study, we use an ultrasound speckle tracking technique to measure the 3D displacements and strains within the central 5.5[Formula: see text]mm of porcine corneas during the whole globe inflation. Inflation tests were performed on dextran-treated corneas (treated with a 10% dextran solution) and untreated corneas. The dextran-treated corneas showed an inflation response expected of a thin spherical shell, with through-thickness thinning and in-plane stretch, although the strain magnitudes exhibited a heterogeneous spatial distribution from the central to more peripheral cornea. The untreated eyes demonstrated a response consistent with swelling during experimentation, with through-thickness expansion overriding the inflation response. The average volume ratios obtained in both groups was near 1 confirming general incompressibility, but local regions of volume loss or expansion were observed. These results suggest that biomechanical measurements in 3D provide important new insight to understand the mechanical response of ocular tissues such as the cornea.


2020 ◽  
Vol 5 ◽  
pp. 28
Author(s):  
Sharifa Zaman ◽  
B. Fatima

The mechanical properties (like sensory texture etc.) of plants/fruits directly depend on their microstructures. Therefore, it is very important to well understand the geometry and topology of cells in order to control the microstructure for better mechanical response. In this research, techniques of digital image processing and segmentation in conjunction with mathematical morphology models are used to visualize and analyze the 3D cells of potato. ImageJ and MATLAB are used throughout in this study. The labeled image stacks are essential for studying quantitative characterization of 3D cells, MATLAB is used to label each image stacks. By using MATLAB 12420 cells were segmented within a short period of time and labeled each cell uniquely.


Author(s):  
J M Soler ◽  
R H Rangel

This article presents a geometrical description of canted coil springs as a particular type of space curve. The influence of the canted angle on the geometrical curvature and torsion is investigated in order to characterize the three-dimensional geometry of the springs. Geometrical descriptions of helical spring rings generated by joining together the two ends of a rectilinear-axis spring as well as several types of spring rings, obtained from rectilinear-axis canted coil springs, are proposed. To create such ring geometries, conservation of length of wire is assumed and approximate relations are derived in order to simplify computations. These geometrical descriptions are then applied to generate appropriate three-dimensional models. Such models can be further imported to computer-aided design and finite-element analysis programmes in order to estimate the mechanical response of such springs.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Claudio A. Careglio ◽  
Diego J. Celentano ◽  
Carlos G. García Garino ◽  
Aníbal E. Mirasso

In simulations of forged and stamping processes using the finite element method, load displacement paths and three-dimensional stress and strains states should be well and reliably represented. The simple tension test is a suitable and economical tool to calibrate constitutive equations with finite strains and plasticity for those simulations. A complex three-dimensional stress and strain states are developed when this test is done on rectangular bars and the necking phenomenon appears. In this work, global and local numerical results of the mechanical response of rectangular bars subjected to simple tension test obtained from two different finite element formulations are compared and discussed. To this end, Updated and Total Lagrangian formulations are used in order to get the three-dimensional stress and strain states. Geometric changes together with strain and stress distributions at the cross section where necking occurs are assessed. In particular, a detailed analysis of the effective plastic strain, stress components in axial and transverse directions and pressure, and deviatoric stress components is presented. Specific numerical results are also validated with experimental measurements comparing, in turn, the performance of the two numerical approaches used in this study.


Author(s):  
Kathleen M. Marr ◽  
Mary K. Lyon

Photosystem II (PSII) is different from all other reaction centers in that it splits water to evolve oxygen and hydrogen ions. This unique ability to evolve oxygen is partly due to three oxygen evolving polypeptides (OEPs) associated with the PSII complex. Freeze etching on grana derived insideout membranes revealed that the OEPs contribute to the observed tetrameric nature of the PSIl particle; when the OEPs are removed, a distinct dimer emerges. Thus, the surface of the PSII complex changes dramatically upon removal of these polypeptides. The atomic force microscope (AFM) is ideal for examining surface topography. The instrument provides a topographical view of individual PSII complexes, giving relatively high resolution three-dimensional information without image averaging techniques. In addition, the use of a fluid cell allows a biologically active sample to be maintained under fully hydrated and physiologically buffered conditions. The OEPs associated with PSII may be sequentially removed, thereby changing the surface of the complex by one polypeptide at a time.


Author(s):  
J. A. Eades ◽  
A. E. Smith ◽  
D. F. Lynch

It is quite simple (in the transmission electron microscope) to obtain convergent-beam patterns from the surface of a bulk crystal. The beam is focussed onto the surface at near grazing incidence (figure 1) and if the surface is flat the appropriate pattern is obtained in the diffraction plane (figure 2). Such patterns are potentially valuable for the characterization of surfaces just as normal convergent-beam patterns are valuable for the characterization of crystals.There are, however, several important ways in which reflection diffraction from surfaces differs from the more familiar electron diffraction in transmission.GeometryIn reflection diffraction, because of the surface, it is not possible to describe the specimen as periodic in three dimensions, nor is it possible to associate diffraction with a conventional three-dimensional reciprocal lattice.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


1998 ◽  
Vol 79 (01) ◽  
pp. 104-109 ◽  
Author(s):  
Osamu Takamiya

SummaryMurine monoclonal antibodies (designated hVII-B101/B1, hVIIDC2/D4 and hVII-DC6/3D8) directed against human factor VII (FVII) were prepared and characterized, with more extensive characterization of hVII-B101/B1 that did not bind reduced FVIIa. The immunoglobulin of the three monoclonal antibodies consisted of IgG1. These antibodies did not inhibit procoagulant activities of other vitamin K-dependent coagulation factors except FVII and did not cross-react with proteins in the immunoblotting test. hVII-DC2/D4 recognized the light chain after reduction of FVIIa with 2-mercaptoethanol, and hVIIDC6/3D8 the heavy chain. hVII-B101/B1 bound FVII without Ca2+, and possessed stronger affinity for FVII in the presence of Ca2+. The Kd for hVII-B101/B1 to FVII was 1.75 x 10–10 M in the presence of 5 mM CaCl2. The antibody inhibited the binding of FVII to tissue factor in the presence of Ca2+. hVII-B101/B1 also inhibited the activation of FX by the complex of FVIIa and tissue factor in the presence of Ca2+. Furthermore, immunoblotting revealed that hVII-B101/B1 reacted with non-reduced γ-carboxyglutaminic acid (Gla)-domainless-FVII and/or FVIIa. hVII-B101/B1 showed a similar pattern to that of non-reduced proteolytic fragments of FVII by trypsin with hVII-DC2/D4 on immunoblotting test. hVII-B101/B1 reacted differently with the FVII from the dysfunctional FVII variant, FVII Shinjo, which has a substitution of Gln for Arg at residue 79 in the first epidermal growth factor (1st EGF)-like domain (Takamiya O, et al. Haemosta 25, 89-97,1995) compared with normal FVII, when used as a solid phase-antibody for ELISA by the sandwich method. hVII-B101/B1 did not react with a series of short peptide sequences near position 79 in the first EGF-like domain on the solid-phase support for epitope scanning. These results suggested that the specific epitope of the antibody, hVII-B101/B1, was located in the three-dimensional structure near position 79 in the first EGF-like domain of human FVII.


Sign in / Sign up

Export Citation Format

Share Document