Overview on Developed Functional Plasma Sprayed Coatings on Glass and Glass Ceramic Substrates

2012 ◽  
Vol 533 ◽  
pp. 115-131
Author(s):  
Miriam Floristán ◽  
Andreas Killinger ◽  
Rainer Gadow

For diverse applications in optical, electronic and consumer industries, the use of glass and glass ceramics as substrates for functional coatings is becoming of outstanding interest in order to develop advanced composites. Atmospheric Plasma Spraying (APS) is an adequate technology for the deposition of a wide variety of materials on glasses. Glass and glass ceramics are characterised by their specific thermo physical properties like low or even negative CTE, low heat conductivity and high dimensional stability. Consequently, modified production processes in comparison to the established coating operations on metal surfaces are required regarding the substrate activation methods or a more accurate heat transfer guidance to the substrate by optimized robot trajectories. This paper aims to give an overview of the investigations carried out at the IMTCCC for the development of plasma sprayed layer composites on borosilicate glass and glass ceramic substrates.

2006 ◽  
Vol 317-318 ◽  
pp. 533-538
Author(s):  
Soo Wohn Lee ◽  
Huang Chen ◽  
Yi Zeng ◽  
Chuan Xian Ding

Nanostructured and conventional Al2O3, ZrO2, and TiO2 were deposited using an atmospheric plasma spraying (APS). The size of commercial nano-ceramic powders was varied from 5nm up to 150nm. The microstructure and phase composition of the plasma sprayed coatings on metallic substrate were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that nano-sized ceramic powders enhanced the deposition efficiency on the metallic substrate rather than the micro-sized conventional commercial powders. Density and mechanical property such as microhardness were better in the case of the nano-sized ceramic powders than that of the conventional micro-sized ceramic powders, which are associated with the fine surface roughness and less size in pores of the coating layers. The wear rate of the nanostructured coating was lower than that of the conventional coating. The results were explained in terms of their microstructure of the coatings layers. Also, photocatalytic characterization of the plasma sprayed coatings, using nanocrystalline size TiO2 as feedstock with various powder sizes and shapes as well as adding with different photocatalytic oxides, was performed. The photocatalytic reactivity using plasma sprayed coating layers can be utilized into various applications.


2019 ◽  
Vol 91 (6) ◽  
pp. 39-45 ◽  
Author(s):  
Monika Michalak ◽  
Leszek Łatka ◽  
Paweł Sokołowski

The Al2O3+TiO2 coatings are of the interest of surface engineering due to their high hardness and wear resistance but also increased toughness, when compared to pure Al2O3 ones. This article describes the deposition of Al2O3+3 wt.% TiO2 coatings by Atmospheric Plasma Spraying (APS) technique. The commercial AMI 6300.1 powder (-45 + 22 μm) was used as a feedstock. The 2k+1 spraying experiment, based on two variables, namely spray distance and torch velocity, was designed. The samples were characterized in the terms of morphology, microstructure, microhardness and roughness. It was observed that the shorter spray distance resulted in lower porosity, higher microhardness and lower roughness of coatings.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 460 ◽  
Author(s):  
John Gerald Odhiambo ◽  
WenGe Li ◽  
YuanTao Zhao ◽  
ChengLong Li

Porosity in plasma-sprayed coatings is vital for most engineering applications. Porosity has its merits and demerits depending on the functionality of the coating and the immediate working environment. Consequently, the formation mechanisms and development of porosity have been extensively explored to find out modes of controlling porosity in plasma-sprayed coatings. In this work, a comprehensive review of porosity on plasma-sprayed coatings is established. The formation and development of porosity on plasma-sprayed coatings are governed by set spraying parameters. Optimized set spraying parameters have been used to achieve the most favorable coatings with minimum defects. Even with the optimized set spraying parameters, defects like porosity still occur. Here, we discuss other ways that can be used to control porosity in plasma-sprayed coating with emphasis to atmospheric plasma-sprayed chromium oxide coatings. Techniques like multilayer coatings, nanostructured coatings, doping with rare earth elements, laser surface re-melting and a combination of the above methods have been suggested in adjusting porosity. The influences of porosity on microstructure, properties of plasma-sprayed coatings and the measurement methods of porosity have also been reviewed.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Anna Woźniak ◽  
Marcin Staszuk ◽  
Łukasz Reimann ◽  
Oktawian Bialas ◽  
Zbigniew Brytan ◽  
...  

AbstractHerein, we analyzed the morphology of atmospheric plasma-sprayed (APS) coating on medical 316L stainless steel and its influence on the physical and electrochemical properties of implant application. Five types of coatings were examined: hydroxyapatite (HAp), titanium (Ti), zirconium (Zr), Ti/HAp and Zr/HAp. The base properties of the coatings were analyzed via chemical and phase composition, surface topography, surface wettability and in particular the corrosion resistance in Ringer solution in immersed conditions and potentiodynamic test, and EIS analysis. APS coating of pure HAp on 316L stainless steel showed poor cohesive bonding to the substrate material, whereas the application of Ti and Zr interlayer prior to HAp deposition improved surface morphology and coating properties. The beneficial effect of Ti and Zr interlayer under HAp layer on binding was demonstrated. HAp containing coatings (HAp, Ti/HAp and Zr/HAp) show Ca/P ratio greater than 1.8, which may positively influence the differentiation of osteogenic cells and good adhesion to bones. Among the studied materials, the composite coatings with Zr or Zr/HAp showed favorable physicochemical properties and the highest corrosion resistance in Ringer solution.


2020 ◽  
Vol 92 (4) ◽  
pp. 17-23
Author(s):  
Joanna Spyra ◽  
Monika Michalak ◽  
Aneta Niemiec ◽  
Leszek Andrzej Łatka

In this paper Al2O3 + 13 wt% TiO2 ceramic coatings manufactured by Atmospheric Plasma Spraying (APS) have been investigated. The commercial feedstock materials, Metco 6221 (top coat) and Amdry 4535 (bond coat) have been deposited on stainless steel coupons. The main goal of researches was to determine the influence of critical plasma spray parameters (CPSP) on structure and properties of the coatings. In present studies, the electrical power was a variable parameter. Coatings have been characterized by in the terms of microstructure, topography, bond strength adhesion, fracture toughness and wear resistance. As a result, it was observed, that coatings sprayed with higher value of the electrical power exhibit higher mechanical properties due to better cohesion as well as higher melting degree.


2002 ◽  
Vol 22 (3) ◽  
pp. 347-351 ◽  
Author(s):  
Yi Zeng ◽  
S.W. Lee ◽  
L. Gao ◽  
C.X. Ding

Author(s):  
Gerald J Odhiambo ◽  
WenGe Li ◽  
YuanTao Zhao ◽  
ChengLong Li

Porosity in plasma sprayed coatings is vital for most engineering applications. It is either advantageous or disadvantageous depending on the functionality of the coating and the immediate working environment. Consequently, the formation mechanisms and development of porosity has been extensively explored to find out modes of controlling porosity in plasma sprayed coatings. In this work, a comprehensive review of porosity on plasma sprayed coatings is established. The formation and development of porosity on plasma sprayed coatings are governed by set spraying parameters. Optimized set spraying parameters have been used to achieve the most favorable coatings with minimum defects. Even with the optimized set spraying parameters, defects like porosity still occur. Here, we discuss other ways that can be used to control porosity in plasma sprayed coating with emphasis to atmospheric plasma sprayed chromium oxide coatings. Techniques like multi-layer coatings, nano-structured coatings, doping with rare earth elements, laser surface re-melting and a combination of the above methods have been suggested in adjusting porosity. The influences of porosity on properties of plasma sprayed coatings and the measurement methods of porosity have also been reviewed.


Sign in / Sign up

Export Citation Format

Share Document