scholarly journals The influence of plasma-sprayed coatings on surface properties and corrosion resistance of 316L stainless steel for possible implant application

2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Anna Woźniak ◽  
Marcin Staszuk ◽  
Łukasz Reimann ◽  
Oktawian Bialas ◽  
Zbigniew Brytan ◽  
...  

AbstractHerein, we analyzed the morphology of atmospheric plasma-sprayed (APS) coating on medical 316L stainless steel and its influence on the physical and electrochemical properties of implant application. Five types of coatings were examined: hydroxyapatite (HAp), titanium (Ti), zirconium (Zr), Ti/HAp and Zr/HAp. The base properties of the coatings were analyzed via chemical and phase composition, surface topography, surface wettability and in particular the corrosion resistance in Ringer solution in immersed conditions and potentiodynamic test, and EIS analysis. APS coating of pure HAp on 316L stainless steel showed poor cohesive bonding to the substrate material, whereas the application of Ti and Zr interlayer prior to HAp deposition improved surface morphology and coating properties. The beneficial effect of Ti and Zr interlayer under HAp layer on binding was demonstrated. HAp containing coatings (HAp, Ti/HAp and Zr/HAp) show Ca/P ratio greater than 1.8, which may positively influence the differentiation of osteogenic cells and good adhesion to bones. Among the studied materials, the composite coatings with Zr or Zr/HAp showed favorable physicochemical properties and the highest corrosion resistance in Ringer solution.

2006 ◽  
Vol 317-318 ◽  
pp. 533-538
Author(s):  
Soo Wohn Lee ◽  
Huang Chen ◽  
Yi Zeng ◽  
Chuan Xian Ding

Nanostructured and conventional Al2O3, ZrO2, and TiO2 were deposited using an atmospheric plasma spraying (APS). The size of commercial nano-ceramic powders was varied from 5nm up to 150nm. The microstructure and phase composition of the plasma sprayed coatings on metallic substrate were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was found that nano-sized ceramic powders enhanced the deposition efficiency on the metallic substrate rather than the micro-sized conventional commercial powders. Density and mechanical property such as microhardness were better in the case of the nano-sized ceramic powders than that of the conventional micro-sized ceramic powders, which are associated with the fine surface roughness and less size in pores of the coating layers. The wear rate of the nanostructured coating was lower than that of the conventional coating. The results were explained in terms of their microstructure of the coatings layers. Also, photocatalytic characterization of the plasma sprayed coatings, using nanocrystalline size TiO2 as feedstock with various powder sizes and shapes as well as adding with different photocatalytic oxides, was performed. The photocatalytic reactivity using plasma sprayed coating layers can be utilized into various applications.


2019 ◽  
Vol 91 (6) ◽  
pp. 39-45 ◽  
Author(s):  
Monika Michalak ◽  
Leszek Łatka ◽  
Paweł Sokołowski

The Al2O3+TiO2 coatings are of the interest of surface engineering due to their high hardness and wear resistance but also increased toughness, when compared to pure Al2O3 ones. This article describes the deposition of Al2O3+3 wt.% TiO2 coatings by Atmospheric Plasma Spraying (APS) technique. The commercial AMI 6300.1 powder (-45 + 22 μm) was used as a feedstock. The 2k+1 spraying experiment, based on two variables, namely spray distance and torch velocity, was designed. The samples were characterized in the terms of morphology, microstructure, microhardness and roughness. It was observed that the shorter spray distance resulted in lower porosity, higher microhardness and lower roughness of coatings.


Coatings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 460 ◽  
Author(s):  
John Gerald Odhiambo ◽  
WenGe Li ◽  
YuanTao Zhao ◽  
ChengLong Li

Porosity in plasma-sprayed coatings is vital for most engineering applications. Porosity has its merits and demerits depending on the functionality of the coating and the immediate working environment. Consequently, the formation mechanisms and development of porosity have been extensively explored to find out modes of controlling porosity in plasma-sprayed coatings. In this work, a comprehensive review of porosity on plasma-sprayed coatings is established. The formation and development of porosity on plasma-sprayed coatings are governed by set spraying parameters. Optimized set spraying parameters have been used to achieve the most favorable coatings with minimum defects. Even with the optimized set spraying parameters, defects like porosity still occur. Here, we discuss other ways that can be used to control porosity in plasma-sprayed coating with emphasis to atmospheric plasma-sprayed chromium oxide coatings. Techniques like multilayer coatings, nanostructured coatings, doping with rare earth elements, laser surface re-melting and a combination of the above methods have been suggested in adjusting porosity. The influences of porosity on microstructure, properties of plasma-sprayed coatings and the measurement methods of porosity have also been reviewed.


Author(s):  
P A Dearnley ◽  
E Kern ◽  
K L Dahm

The present paper describes the major part of a recent research investigation whose main purpose was to develop a series of novel functional coatings based on the Al2O3-SiC system that ideally would have a nanocomposite microstructure. Such coatings should be well suited for the wear protection of steel and cast-iron piston rings used in automotive internal combustion engines. Two methods were investigated: (i) plasma spraying and (ii) magnetron sputtering. The former was applied to cast-iron and plain carbon steel, whereas the latter was applied to stainless steel piston rings. The plasma sprayed coatings were porous with a hardness of 900-1150 HV, whereas the sputtered coatings were glassy and dense with a hardness of 701-788 HV. High-speed reciprocation wear tests, which simulate the piston ring/cylinder wall environment, were used to assess all coatings. CKS-36 coated cast-iron rings, one of the more common industry standards for this application, were also evaluated. Results showed these to be the most wear resistant. They were smoothly worn, possibly by a microabrasion wear process. The plasma sprayed coatings displayed two main types of wear surface: rough and smooth. The former were mainly generated by a process of grain or particle pull-out, whereas the latter resulted from a combination of microabrasion and microflaking mechanisms. The use of diamond grinding, for finishing the plasma sprayed coatings, mitigated failure through grain pull-out, but wear rates still remained slightly too high compared with uncoated stainless steel and CKS-36 coated cast-iron rings. Most of the sputtered coatings displayed varying degrees of smooth wear which was mitigated as the coating hardness increased. However, this trend was masked by sporadic coating loss through adhesive and/or cohesive failure. The creation of a gradated sputter coating having a core composition based on the Al2O3-SiC variant containing most Si and C and incorporating a bond layer enriched in Cr, adjacent the substrate, eliminated cohesive and adhesive coating failures. Future work should concentrate on the development and evaluation of sputtered crystalline Al2O3-SiC coatings and HVOF sprayed Al2O3-SiC variants. There may also be significant potential in investigating glassy Al2O3-SiC coatings containing significantly higher quantities of Si and C to those reported here.


1973 ◽  
Vol 12 (3) ◽  
pp. 199-202 ◽  
Author(s):  
O. B. Chevela ◽  
L. M. Orlova ◽  
I. A. Morozov ◽  
S. T. Baskakov ◽  
L. M. Ryabich

2014 ◽  
Vol 606 ◽  
pp. 183-186
Author(s):  
Monika Vilémová ◽  
Barbara Nevrlá ◽  
Jiří Matějíček ◽  
Radek Mušálek

This study was aimed to investigate the effect of the substrate preheating temperature on the overall quality of the coating/substrate interface. The coatings (stainless steel) were deposited using a water stabilized plasma torch (Institute of Plasma Physics, Prague, i.e. IPP, Czech Republic) on steel substrates. Three sets of samples were prepared under identical spraying and grit blasting condition; substrate preheating temperature was the only parameter which was varied, i.e. preheating to 150°C, 250°C and 350°C. Higher preheating temperature led to a significant increase in the coating adhesion.


2015 ◽  
Vol 766-767 ◽  
pp. 579-584 ◽  
Author(s):  
A. Anderson

A relative study among various types of coating materials to develop wear resistance of stainless steel has been performed. Ceramic coatings with the thickness up to 250 μm were prepared by Atmospheric plasma spray technique on the stainless steel. Two different types of coating materials such that Yttria Stabilised Zirconia, Zirconia Ceria powder were used. The influence of Ceria powder on abrasive wear was determined. It was found that the addition of Ceria to Yttria Stabilised Zirconia in a sufficient amount helped in increasing its wear resistance compared to the wear behaviour of pure Yttria Stabilised Zirconia powder. Moreover, it was found that the lesser the surface roughness of the coating layer,.


2020 ◽  
Vol 92 (4) ◽  
pp. 17-23
Author(s):  
Joanna Spyra ◽  
Monika Michalak ◽  
Aneta Niemiec ◽  
Leszek Andrzej Łatka

In this paper Al2O3 + 13 wt% TiO2 ceramic coatings manufactured by Atmospheric Plasma Spraying (APS) have been investigated. The commercial feedstock materials, Metco 6221 (top coat) and Amdry 4535 (bond coat) have been deposited on stainless steel coupons. The main goal of researches was to determine the influence of critical plasma spray parameters (CPSP) on structure and properties of the coatings. In present studies, the electrical power was a variable parameter. Coatings have been characterized by in the terms of microstructure, topography, bond strength adhesion, fracture toughness and wear resistance. As a result, it was observed, that coatings sprayed with higher value of the electrical power exhibit higher mechanical properties due to better cohesion as well as higher melting degree.


Sign in / Sign up

Export Citation Format

Share Document