Effect of Tensile Speed on the Failure Load of Laser Welding under Combined Loading Conditions

2013 ◽  
Vol 535-536 ◽  
pp. 489-492 ◽  
Author(s):  
Jiwoong Ha ◽  
Hoon Huh ◽  
Keunhwan Pack ◽  
Soonkeun Jang

This paper is concerned with the failure characteristics and the failure loads of laser welds in a SPRC340 1.2t steel sheet under combined normal and shear loading conditions. The quasi-static and dynamic failure tests were carried out under nine different combined normal and shear loads including a pure-normal load and a pure-shear load. Especially for the pure-shear condition, a testing fixture was newly designed in order to evaluate the strength of a laser-welded region fabricated by the same welding condition as a two-layered lap joint. The failure load and the failure behavior of laser welds were investigated in each loading condition. Dynamic effects on the failure load of laser welds, which are critical for structural crashworthiness, were also examined based on the experimental data. In order to evaluate the effect of the strain rate on the failure contour of laser welds under the combined normal and shear loads, the failure loads measured from the experiment were decomposed into two components along the normal and shear directions.

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1469-1474 ◽  
Author(s):  
JUNG-HAN SONG ◽  
HOON HUH ◽  
JI-HO LIM ◽  
SUNG-HO PARK

This paper is concerned with the evaluation of the dynamic failure load of the spot weld under combined axial and shear loading conditions. The testing fixture are designed to impose the combined axial and shear load on the spot weld. Using the proposed testing fixtures and specimens, quasi-static and dynamic failure tests of the spot weld are conducted with seven different combined loading conditions. The failure load and failure behavior of the spot weld are investigated with different loading conditions. Dynamic effects on the failure load of the spot weld, which is critical for structural crashworthiness, are also examined based on the experimental data. In order to evaluate the effect of the strain rate on the failure contour of the spot weld under combined axial and shear loads, the failure loads measured from the experiment are decomposed into the two components along the axial and shear directions. Experimental results indicate that the failure contour is expanded with increasing strain rates according to the rate sensitivity of the ultimate stress for welded material.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Jung Han Song ◽  
Hoon Huh

This paper is concerned with the evaluation of the dynamic failure load of the spot weld under combined axial and shear loading conditions. The testing fixture is designed to impose the combined axial and shear load on the spot weld. Using the proposed testing fixtures and specimens, quasi-static and dynamic failure tests of the spot weld are conducted with seven different combined loading conditions. The failure load and failure behavior of the spot weld are investigated with different loading conditions. Effect of tensile speeds on the failure load of the spot weld, which is critical for structural crashworthiness, is also examined based on the experimental data. The failure loads measured from the experiment are decomposed into the two components along the axial and shear directions and failure contours are plotted with different loading speeds. Dynamic sensitivities of failure loads with various combined loading conditions were also analyzed. Experimental results indicate that the failure contour is expanded with increasing loading speeds and failure loads show similar dynamic sensitivity with respect to the loading angles.


Author(s):  
Hamid Reza Majidi ◽  
Seyed Mohammad Javad Razavi ◽  
Filippo Berto

In the current study, the failure behavior of retrofitted steel structures was studied experimentally and theoretically with steel/CFRP double strap joints (DSJs) under quasi-static tensile loading. A series of DSJs with different bonding lengths are also considered and examined to experimentally assess the effective bond length. To predict the failure load values of the tested specimens, a new stress-based criterion, namely the point stress (PS) criterion is proposed. Although some theoretical predictive modelling for the strength between steel/CFRP joints under various loading conditions has been presented, in this work by using the new proposed approach, one can calculate rapidly and conveniently the failure loads of the steel/CFRP specimens. Furthermore, to assess the validity of the new proposed criterion, further experimental data on steel/CFRP DSJs available in the open literature are predicted using the PS criterion. Finally, it was found that a good agreement exists between the experimental results and the theoretical predictions based on the PS criterion.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5527-5532 ◽  
Author(s):  
J. H. SONG ◽  
J. W. HA ◽  
H. HUH ◽  
J. H. LIM ◽  
S. H. PARK

This paper is concerned with the evaluation of the dynamic failure load in the lap-shear tests of a spot weld. Dynamic lap-shear tests of a spot weld in SPRC340R were conducted with different tensile speeds ranging from 5×10-5 m/sec to 5.0 m/sec. Dynamic effects on the failure load of a spot weld are examined based on the experimental data. Experimental results indicate that failure strength increases with increasing loading rates. Finite element analyses of dynamic lap-shear tests were also performed considering the failure of a spot weld. A spot weld is modeled with a beam element and dynamic failure model is utilized in order to describe the failure of a spot weld in the simulation. The failure loads obtained from the analyses are compared to those from the lap-shear tests. The comparison shows that the failure loads obtained from the analyses are close in consistence with those obtained from the experiments.


2014 ◽  
Vol 670-671 ◽  
pp. 173-176 ◽  
Author(s):  
Li Xin Cong ◽  
Yu Guo Sun

In order to solve the problem of the face/core bonding performance of the sandwich structure, this paper proposed a M - pattern folded sandwich structure. Structural performance in direct (pure) shear was investigated for sandwich structure. FE-Analytical of sandwich structure strength under shear loading condition was presented for possible failure modes. Panels with core of different thickness were tested for different failure modes and the mechanical properties. In general, the measured failure loads showed good agreement with the FE-analytical predictions.The results shown that failure modes of the sandwich structure with low relative density were shear buckling and fracture of thin-walled of cores, respectively. For the sandwich structure with high relative density, the dominant failure mode was interfacial debonding of face/cores, and the initiating failure along the ends of the specimens.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Duncan Camilleri ◽  
Brian Ellul

Composite pipes are currently being used in a multitude of applications varying from civil to oil and gas applications. Pipes are generally connected together by means of pipe elbows that in turn are subjected to bending moment and pressure loading. This study looks into the effect of combined loading on the first ply and ultimate failure load of pipe elbows. The influence of pressure loading followed by a bending moment versus first applying bending moment followed by subsequent pressure loading, on the ultimate catastrophic failure load, is investigated through numerical models. The combined bending moment and pressure load ramping is also studied. Design by analysis finite element damage mechanics numerical methods are applied to investigate post first ply failure (FPF) and stress redistribution. The study shows that different loading combinations can give rise to different damage mechanisms and ultimately failure loads. A safe design load envelope for different fiber-reinforced pipe elbows based on FPF and ultimate catastrophic load is identified and discussed.


2004 ◽  
Vol 44 (2) ◽  
pp. 147-157 ◽  
Author(s):  
S. -H. Lin ◽  
J. Pan ◽  
S. Wu ◽  
T. Tyan

CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 692-711
Author(s):  
Boglárka Bokor ◽  
Akanshu Sharma

Anchorages of non-rectangular configuration, though not covered by current design codes, are often used in practice due to functional or architectural needs. Frequently, such anchor groups are placed close to a concrete edge and are subjected to shear loads. The design of such anchorages requires engineering judgement and no clear rules are given in the codes and standards. In this work, numerical investigations using a nonlinear 3D FE analysis code are carried out on anchor groups with triangular and hexagonal anchor patterns to understand their behavior under shear loads. A microplane model with relaxed kinematic constraint is utilized as the constitutive law for concrete. Two different orientations are considered for both triangular and hexagonal anchor groups while no hole clearance is considered in the analysis. Two loading scenarios are investigated: (i) shear loading applied perpendicular and towards the edge; and (ii) shear loading applied parallel to the edge. The results of the analyses are evaluated in terms of the load-displacement behavior and failure modes. A comparison is made between the results of the numerical simulations and the analytical calculations according to the current approaches. It is found that, similar to the rectangular anchorages, and also for such non-rectangular anchorages without hole clearance, it may be reasonable to calculate the concrete edge breakout capacity by assuming a failure crack from the back anchor row. Furthermore, the failure load of the investigated groups loaded in shear parallel to the edge may be considered as twice the failure load of the corresponding groups loaded in shear perpendicular to the edge.


Sign in / Sign up

Export Citation Format

Share Document