Numerical Investigation of Propagation of Ultrasonic Waves in the Waveguides with Mode Conversion

2013 ◽  
Vol 543 ◽  
pp. 219-222
Author(s):  
Elena Jasiūnienė ◽  
Egidijus Žukauskas ◽  
Rymantas Kažys

Ultrasonic investigation techniques are widely used in materials characterisation and non-destructive testing applications. In special cases of applications, such as investigation of properties of melted polymers, metals and hot liquids, measurements must be performed in a wide temperature range. However conventional piezoelectric transducers cannot withstand higher temperatures than the Curie temperature. Therefore in order to protect conventional ultrasonic transducers from influence of a high temperature and to avoid depolarization, measurements must be performed using special waveguides with a low thermal conductivity between the object under investigation and the ultrasonic transducer. For measurements of the material properties, such as viscoelastic properties of materials, additional shear wave transducers must be used. In this work approach how to excite both, longitudinal and shear waves using special waveguides with mode conversion, using pair of conventional ultrasonic longitudinal wave transducers is presented. In this work numerical investigation of propagation of longitudinal and shear ultrasonic waves in the waveguides with mode conversion using finite element method and CIVA software was carried out. Modelling of propagation of simultaneously generated longitudinal and shear waves using pair of longitudinal ultrasonic transducers was performed. Influence of temperature gradient to the required incidence angle of the longitudinal wave was evaluated.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 723
Author(s):  
Wen-Bei Liu ◽  
Wen-Bo Yan ◽  
Huan Liu ◽  
Cheng-Guo Tong ◽  
Ya-Xian Fan ◽  
...  

We have built a Fizeau fiber interferometer to investigate the internal cylindrical defects in an aluminum plate based on laser ultrasonic techniques. The ultrasound is excited in the plate by a Q-switched Nd:YAG laser. When the ultrasonic waves interact with the internal defects, the transmitted amplitudes of longitudinal and shear waves are different. The experimental results show that the difference in transmission amplitudes can be attributed to the high frequency damping of internal cylinders. When the scanning point is close to the internal defect, the longitudinal waves attenuate significantly in the whole defect area, and their amplitude is always smaller than that of shear waves. By comparing the transmitted amplitudes of longitudinal and shear waves at different scanning points, we can achieve a C scan image of the sample to realize the visual inspection of internal defects. Our system exhibits outstanding performance in detecting internal cylinders, which could be used not only in evaluating structure cracks but also in exploring ultrasonic transmission characteristics.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2590
Author(s):  
Alexandre Robichaud ◽  
Dominic Deslandes ◽  
Paul-Vahé Cicek ◽  
Frederic Nabki

This paper proposes a system in package (SiP) for ultrasonic ranging composed of a 4 × 8 matrix of piezoelectric micromachined ultrasonic transducers (PMUT) and an interface integrated circuit (IC). The PMUT matrix is fabricated using the PiezoMUMPS process and the IC is implemented in the AMS 0.35 µm technology. Simulation results for the PMUT are compared to the measurement results, and an equivalent circuit has been derived to allow a better approximation of the load of the PMUT on the IC. The control circuit is composed of a high-voltage pulser to drive the PMUT for transmission and of a transimpedance amplifier to amplify the received echo. The working frequency of the system is 1.5 MHz.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1309
Author(s):  
P. R. Gordoa ◽  
A. Pickering

We consider the problem of the propagation of high-intensity acoustic waves in a bubble layer consisting of spherical bubbles of identical size with a uniform distribution. The mathematical model is a coupled system of partial differential equations for the acoustic pressure and the instantaneous radius of the bubbles consisting of the wave equation coupled with the Rayleigh–Plesset equation. We perform an analytic analysis based on the study of Lie symmetries for this system of equations, concentrating our attention on the traveling wave case. We then consider mappings of the resulting reductions onto equations defining elliptic functions, and special cases thereof, for example, solvable in terms of hyperbolic functions. In this way, we construct exact solutions of the system of partial differential equations under consideration. We believe this to be the first analytic study of this particular mathematical model.


Author(s):  
David Yates ◽  
Angelo Tarantino ◽  
Joop Kraijesteijn

Turbine rotors failure has resulted in a broad spectrum of events ranging from catastrophic burst to prolonged forced outages that ultimately have significant economic costs for affected utilities. Avoiding turbine rotor failure and its associated cost requires a detailed understanding of the operational reliability of power generation equipment. Nearly all large body turbine and generator rotors manufactured in the United States typically have a central bore hole that provides suitable access from which to conduct various material inspections. The term “boresonics” has become synonymous with the procedure for performing ultrasonic examination of turbine rotor material as conducted from the surface of a central bore cavity. Boresonics is now a fairly common and accepted practice throughout the utility industry. In general, boresonics involves passing ultrasonic transducers through the rotor bore to search a given volume of material for flaws at different locations and orientations within a rotor forging. Each individual ultrasonic transducer has specific inherent performance characteristics based on known wave physics that governs the art of ultrasonic testing. The results of boresonic inspections offer utility engineers a basis for making intelligent decisions on the condition of turbine and generator rotors. This paper describes how boresonic inspections are typically performed in the industry. Furthermore, the paper will give a description of the equipment and required skills of the system operators and will present examples of findings based on KEMA’s experience in this field.


2012 ◽  
Vol 629 ◽  
pp. 682-687 ◽  
Author(s):  
Bo Xiong Wang ◽  
Wen Feng Liu ◽  
Jian Nan Liu ◽  
Yuan Yuan Cui ◽  
Xiu Zhia Luo

The performances of ultrasonic testing systems are greatly affected by the impedance characteristics of ultrasonic transducers. Conventional methods for designing matching networks consider only the characteristics of matching elements and transducer, while ignoring the effects of other elements of emission circuit. As a consequence, such method cannot give out satisfactory results. In this paper, a modeling method for ultrasonic driving circuits is proposed, which takes into account the power supply, the transformer, the matching networks, as well as the ultrasonic transducer. This method focuses on the performances both in time domain and in frequency domain. A computer simulation and experiments show that this method can provide better attenuation characteristics and energy transmission, and can be widely used for analyzing and designing matching network for ultrasonic testing systems.


Sign in / Sign up

Export Citation Format

Share Document