Dramatic Speed-Up in FEM Simulations of Various Incremental Forming Processes Thanks to Multi-Mesh Implementation in Forge®

2013 ◽  
Vol 554-557 ◽  
pp. 2499-2506
Author(s):  
Pascal De Micheli ◽  
Etienne Perchat ◽  
Richard Ducloux ◽  
Hugues Digonnet ◽  
Lionel Fourment

Improvements in parallel computing and adaptive remeshing have permitted to simulate a wide range of metal forming processes within few hours or days on modern multi-core workstations. However, they do not tackle the issues encountered in incremental forming processes, making them very challenging. Multi-mesh methods opens very interesting doors in this domain, making possible to take advantage of adaptive remeshing techniques (optimizing the ratio precision/cost) without its usual drawbacks (loss of information and diffusion issues).We present in this article a fully parallel Dual-Mesh implementation in the commercial FEA software FORGE®, compatible with a wide range of other FEM facilities. Speed-up larger than 4 are common for incremental forming simulations, and speed-up larger than 10 can be reached in favorable cases. Parallel efficiency is the same than for our standard computations (>80% for more than 2000 nodes per core).

2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


2015 ◽  
Vol 651-653 ◽  
pp. 213-218
Author(s):  
Jonathan Schäfer ◽  
Michael Schober ◽  
Arno Plankensteiner

Metal forming simulations based on the finite element method are a frequently used tool for the prediction of the deformed shape, material state and reaction forces. The most critical prerequisite for any reliable result is a reasonable description of the constitutive behavior of the underlying material. The presented work focusses on the latter for the case of molybdenum via advanced formulations for the temperature and strain rate dependence. The quality of the results is compared for several approaches. Sheet metal rolling serves as an example application. Verification is based on comparison with data from industrial processes.


Author(s):  
Shingo Kihira ◽  
Nadejda Tsankova ◽  
Adam Bauer ◽  
Yu Sakai ◽  
Keon Mahmoudi ◽  
...  

Abstract Background Early identification of glioma molecular phenotypes can lead to understanding of patient prognosis and treatment guidance. We aimed to develop a multiparametric MRI texture analysis model using a combination of conventional and diffusion MRI to predict a wide range of biomarkers in patients with glioma. Methods In this retrospective study, patients were included if they 1) had diagnosis of gliomas with known IDH1, EGFR, MGMT, ATRX, TP53 and PTEN status from surgical pathology and 2) had preoperative MRI including FLAIR, T1c+ and diffusion for radiomic texture analysis. Statistical analysis included logistic regression and receiver-operating characteristic (ROC) curve analysis to determine the optimal model for predicting glioma biomarkers. A comparative analysis between ROCs (conventional only vs. conventional + diffusion) was performed. Results From a total of 111 patients included, 91 (82%) were categorized to training and 20 (18%) to test datasets. Constructed cross-validated model using a combination of texture features from conventional and diffusion MRI resulted in overall AUC/accuracy of 1/79% for IDH1, 0.99/80% for ATRX, 0.79/67% for MGMT, and 0.77/66% for EGFR. The addition of diffusion data to conventional MRI features significantly (p<0.05) increased predictive performance for IDH1, MGMT and ATRX. The overall accuracy of the final model in predicting biomarkers in the test group was 80% (IDH1), 70% (ATRX), 70% (MGMT) and 75% (EGFR). Conclusion Addition of MR diffusion to conventional MRI features provides added diagnostic value in preoperative determination of IDH1, MGMT, and ATRX in patients with glioma.


Author(s):  
Ruiyang Song ◽  
Kuang Xu

We propose and analyze a temporal concatenation heuristic for solving large-scale finite-horizon Markov decision processes (MDP), which divides the MDP into smaller sub-problems along the time horizon and generates an overall solution by simply concatenating the optimal solutions from these sub-problems. As a “black box” architecture, temporal concatenation works with a wide range of existing MDP algorithms. Our main results characterize the regret of temporal concatenation compared to the optimal solution. We provide upper bounds for general MDP instances, as well as a family of MDP instances in which the upper bounds are shown to be tight. Together, our results demonstrate temporal concatenation's potential of substantial speed-up at the expense of some performance degradation.


2015 ◽  
Vol 1117 ◽  
pp. 283-286
Author(s):  
Inga Dāboliņa ◽  
Ausma Viļumsone ◽  
Jānis Dāboliņš ◽  
Dana Beļakova

Computer aided designing software not only the possibility to speed up the process of putting a new model into production and improve the quality of the products, but also reduces material costs and labour intensity, ensuring an elastic change of the assortment. The designing of clothes includes a row of processes and one of the most time and labour consuming is constructing. A construction displays the layout (pattern) of the surface of the body (garment). As it depends on correct anthropometric data, it is very important to get ones right. The use of 3D surface scanning technologies to produce digitized representations of the human anatomy has the potential to help change the way a wide range of products are designed and produced. Every scanning device is equipped with optic (light) appliances to ensure non-contact measuring. Measurements acquired by 3D scanning device should be checked out for compliance with CAD systems for automatized pattern making procedure. The paper introduces the experiment with scanned data usage in CAD pattern making. The project aims to implement scanned data values in the CAD/CAM individual measurement list for acquiring individualized pattern blocks.


2021 ◽  
Vol 18 (1) ◽  
pp. 22-30
Author(s):  
Erna Nurmawati ◽  
Robby Hasan Pangaribuan ◽  
Ibnu Santoso

One way to deal with the presence of missing value or incomplete data is to impute the data using EM Algorithm. The need for large and fast data processing is necessary to implement parallel computing on EM algorithm serial program. In the parallel program architecture of EM Algorithm in this study, the controller is only related to the EM module whereas the EM module itself uses matrix and vector modules intensively. Parallelization is done by using OpenMP in EM modules which results in faster compute time on parallel programs than serial programs. Parallel computing with a thread of 4 (four) increases speed up, reduces compute time, and reduces efficiency when compared to parallel computing by the number of threads 2 (two).


Sign in / Sign up

Export Citation Format

Share Document