An Experimental Investigation of Cutting Forces in Hard Milling of H13 Steel under Different Cooling/Lubrication Conditions

2013 ◽  
Vol 589-590 ◽  
pp. 13-18 ◽  
Author(s):  
Song Zhang ◽  
Jian Feng Li ◽  
Hong Gang Lv ◽  
Wei Dong Chen

In the present research, an attempt has been made to experimentally investigate the cutting forces in hard milling of H13 steel with coated carbide tools under dry, MQL (minimum quantity lubrication) and MQCL (minimum quantity cooling lubrication) cutting conditions. Based on Taguchis method, four-factor (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) four-level orthogonal experiments were employed. It is found that the periodical fluctuation of the cutting forces caused by the variation of the undeformed chip thickness with the entry/exit of the cutting edge is an essential feature of the hard milling process. The empirical models for cutting forces are established, and ANOVA (analysis of variance) indicates that the quadratic models can well express the relationship between cutting forces and cutting parameters.

2013 ◽  
Vol 690-693 ◽  
pp. 2403-2407
Author(s):  
Tong Chao Ding

In the present study, an attempt has been made to experimentally investigate the effects of the cutting parameters on cutting forces in hard milling of AISI H13 steel with coated carbide tools. Designed based on Taguchi method, four factor (cutting speed, feed, radial depth of cut and axial depth of cut) four level orthogonal experiments were conducted. Three components of cutting forces were measured during hard milling experiments and then variance analysis was performed. Finally, the linear regression model was established.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2015 ◽  
Vol 813-814 ◽  
pp. 498-504 ◽  
Author(s):  
A. Tamilarasan ◽  
D. Rajamani ◽  
A. Renugambal

This paper proposes the prediction of cutting temperature, tool wear and metal removal rate using fuzzy and regression modeling techniques for the hard milling process. The feed per tooth, radial depth of cut, axial depth of cut and cutting speed were used as process state variables.The experiements were conducted using RSM based central composite rotatable design methodology. Regression and fuzzy modeling were used to evaluate the input – output relationship in the process. It is interesting to observe that the R2 and average error values for each response are very consistent with small variations were obtained.Also, the confirmation results show that very less relative error varitions. Thus, the developed fuzzy models directly integrated in manufacturing systems to reduce the more computational complexity in the process planning activities.


2009 ◽  
Vol 69-70 ◽  
pp. 418-422
Author(s):  
L.D. Wu ◽  
Cheng Yong Wang ◽  
D.H. Yu ◽  
Yue Xian Song

Hardened steel P20 at 50 HRC is milled at high speed by TiN coated and TiAlN coated solid carbide straight end mills, and the cutting forces and tool wear are measured. The result shows that TiAlN coated tool is more suitable for cutting hardened steel at high speed. Then the hardened steel is milled under different cutting parameters. It is indicated that the effect of cutting speed on cutting forces is small, but the effect of cutting speed on machine vibration should be considered. Increase feed per tooth or radial depth of cut will increase the cutting forces.


2019 ◽  
Vol 825 ◽  
pp. 123-128
Author(s):  
Kota Matsuda ◽  
Ryutaro Tanaka ◽  
Katsuhiko Sekiya ◽  
Keiji Yamada

In this study, the transition of cutting force in the tangential and radial direction during one cut was investigated in milling of AISI-1045, AISI-304, and Ti-6Al-4V with a TiN coated carbide throw-away insert. In the case of 1045 and Ti-6Al-4V, there was not obvious difference in tangential forces between up-cut and down-cut. However, up-cut showed larger radial force than down-cut in any material. In down-cut, tangential force showed almost the same regardless of radial depth of cut. 304 and Ti-6Al-4V caused larger radial force with the increase of radial depth of cut at the same cut chip thickness.


2013 ◽  
Vol 641-642 ◽  
pp. 367-370
Author(s):  
Gui Qiang Liang ◽  
Fei Fei Zhao

Abstract In the present study, an attempt has been made to investigate the effect of cutting parameters (cutting speed, feed rate and depth of cut) on cutting forces (feed force, thrust force and cutting force) and surface roughness in milling of Quartz glas using diamond wheel. The cutting process in the up-cut milling of glass is discussed and the cutting force measured. The cutting force gradually increases with the cutter rotation at the beginning of the cut, and oscillates about a constant mean value after a certain undeformed chip thickness. The results show that cutting forces and surface roughness do not vary much with experimental cutting speed in the range of 55–93 m/min. The suggested models of cutting forces and surface roughness and adequately map within the limits of the cutting parameters considered.


2010 ◽  
Vol 126-128 ◽  
pp. 911-916 ◽  
Author(s):  
Yuan Wei Wang ◽  
Song Zhang ◽  
Jian Feng Li ◽  
Tong Chao Ding

In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide inserts. The signal-to-noise (S/N) ratio are employed to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on surface roughness, and the optimal combination of the cutting parameters for the desired surface roughness is obtained. An exponential regression model for the surface roughness is formulated based on the experimental results. Finally, the verification tests show that surface roughness generated by the optimal cutting parameters is really the minimum value, and there is a good agreement between the predictive results and experimental measurements.


2014 ◽  
Vol 800-801 ◽  
pp. 590-595
Author(s):  
Qing Zhang ◽  
Song Zhang ◽  
Jia Man ◽  
Bin Zhao

Surface roughness has a significant effect on the performance of machined components. In the present study, a total of 49 end milling experiments on AISI H13 steel are conducted. Based on the experimental results, the signal-to-noise (S/N) ratio is employed to study the effects of cutting parameters (axial depth of cut, cutting speed, feed per tooth and radial depth of cut) on surface roughness. An ANN predicting model for surface roughness versus cutting parameters is developed based on the experimental results. The testing results show that the proposed model can be used as a satisfactory prediction for surface roughness.


Sign in / Sign up

Export Citation Format

Share Document