Cutting Force Changes during One Cut in End Milling with a Throw-Away Insert - Difference between Up-Cut and Down-Cut –

2019 ◽  
Vol 825 ◽  
pp. 123-128
Author(s):  
Kota Matsuda ◽  
Ryutaro Tanaka ◽  
Katsuhiko Sekiya ◽  
Keiji Yamada

In this study, the transition of cutting force in the tangential and radial direction during one cut was investigated in milling of AISI-1045, AISI-304, and Ti-6Al-4V with a TiN coated carbide throw-away insert. In the case of 1045 and Ti-6Al-4V, there was not obvious difference in tangential forces between up-cut and down-cut. However, up-cut showed larger radial force than down-cut in any material. In down-cut, tangential force showed almost the same regardless of radial depth of cut. 304 and Ti-6Al-4V caused larger radial force with the increase of radial depth of cut at the same cut chip thickness.

2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Abdolreza Bayesteh ◽  
Junghyuk Ko ◽  
Martin Byung-Guk Jun

There is an increasing demand for product miniaturization and parts with features as low as few microns. Micromilling is one of the promising methods to fabricate miniature parts in a wide range of sectors including biomedical, electronic, and aerospace. Due to the large edge radius relative to uncut chip thickness, plowing is a dominant cutting mechanism in micromilling for low feed rates and has adverse effects on the surface quality, and thus, for a given tool path, it is important to be able to predict the amount of plowing. This paper presents a new method to calculate plowing volume for a given tool path in micromilling. For an incremental feed rate movement of a micro end mill along a given tool path, the uncut chip thickness at a given feed rate is determined, and based on the minimum chip thickness value compared to the uncut chip thickness, the areas of plowing and shearing are calculated. The workpiece is represented by a dual-Dexel model, and the simulation properties are initialized with real cutting parameters. During real-time simulation, the plowed volume is calculated using the algorithm developed. The simulated chip area results are qualitatively compared with measured resultant forces for verification of the model and using the model, effects of cutting conditions such as feed rate, edge radius, and radial depth of cut on the amount of shearing and plowing are investigated.


2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2013 ◽  
Vol 718-720 ◽  
pp. 239-243
Author(s):  
Girma Seife Abebe ◽  
Ping Liu

Cutting force is a key factor influencing the machining deformation of weak rigidity work pieces. In order to reduce the machining deformation and improve the process precision and the surface quality, it is necessary to study the factors influencing the cutting force and build the regression model of cutting forces. This paper discusses the development of the first and second order models for predicting the cutting force produced in end-milling operation of modified manganese steel. The first and second order cutting force equations are developed using the response surface methodology (RSM) to study the effect of four input cutting parameters (cutting speed, feed rate, radial depth and axial depth of cut) on cutting force. The separate effect of individual input factors and the interaction between these factors are also investigated in this study. The received second order equation shows, based on the variance analysis, that the most influential input parameter was the feed rate followed by axial depth, and radial depth of cut. It was found that the interaction of feed with axial depth was extremely strong. In addition, the interactions of feed with radial depth; and feed rate with radial depth of cut were observed to be quite significant. The predictive models in this study are believed to produce values of the longitudinal component of the cutting force close to those readings recorded experimentally with a 95% confident interval.


1994 ◽  
Vol 116 (1) ◽  
pp. 17-25 ◽  
Author(s):  
J.-J. Junz Wang ◽  
S. Y. Liang ◽  
W. J. Book

This paper presents the establishment of a closed form expression for the dynamic forces as explicit functions of cutting parameters and tool/workpiece geometry in milling processes. Based on the existing local cutting force model, the generation of total cutting forces is formulated as the angular domain convolution of three cutting process component functions, namely the elementary cutting function, the chip width density function, and the tooth sequence function. The elemental cutting force function is related to the chip formation process in an elemental cutting area and it is characterized by the chip thickness variation, and radial cutting configuration. The chip width density function defines the chip width per unit cutter rotation along a cutter flute within the range of axial depth of cut. The tooth sequence function represents the spacing between flutes as well as their cutting sequence as the cutter rotates. The analysis of cutting forces is extended into the Fourier domain by taking the frequency multiplication of the transforms of the three component functions. Fourier series coefficients of the cutting forces are shown to be explicit algebraic functions of various tool parameters and cutting conditions. Numerical simulation results are presented in the frequency domain to illustrate the effects of various process parameters. A series of end milling experiments are performed and their results discussed to validate the analytical model.


This exploration is carried out to reveal the outcome of turning factors such as cutting velocity, depth of cut and feed rate on the surface roughness, mean cutting force and tool-work interface temperature on turning cylindrical 655M13 steel alloy components. The experiments are designed based on (33) full factorial design and conducted on a turning centre with Titanium Aluminium Nitride (TiAlN) layered carbide tool of 0.8mm nose radius, simultaneously cutting forces such as feed force, thrust force and tangential force and the tool-work interface temperature are observed using calibrated devices. The surface roughness of the turned steel alloy parts is deliberated by means of a precise surface roughness apparatus. Prediction models are created for average surface roughness, mean cutting force and tool-work interface temperature by nonlinear regression examination with the aid of MINITAB numerical software. The optimum machining conditions are confirmed with the aid of a Genetic Algorithm. The outcome of each turning factor on the surface roughness, mean cutting force and tool-work interface temperature is studied and presented accordingly.


2010 ◽  
Vol 136 ◽  
pp. 108-113 ◽  
Author(s):  
Can Liu ◽  
Guang Yu Tan ◽  
G.H. Li ◽  
J.S. Liang ◽  
D.R. Li

In order to obtain the features of force for three-edge end mills in normally milling, an equation of milling force in Y direction was built based on the presumption that the forces of every edge are not equal, and its simulation waveforms in time domain was analyzed, the force of Y direction was found to present different spectral features under different radial depth of cut or ratio of radial force to tangential force. Milling experiments were done in a three-axis CNC machine, the features of measured force meets the results of simulation analyze. Study results indicates that the force in slot milling contains a rather great sub-component with spindle rotational frequency, while in partial milling the main sub-component is that with tripler of spindle rotational frequency. This conclusion can be used as the reference basis in judging failure of mills.


2013 ◽  
Vol 465-466 ◽  
pp. 1049-1053 ◽  
Author(s):  
Abu Bakar Mohd Hadzley ◽  
Ahmad Siti Sarah ◽  
Raja Abdullah Raja Izamshah ◽  
Amran Ali Mohd ◽  
Mohd Shahir Kasim ◽  
...  

Metal matrix composite is composite material that combines the metallic properties of matrix alloys and additional element to reinforce the product. This paper evaluates the machining performance of uncoated carbide and coated carbide in terms of surface integrity during end milling of LM6 aluminium MMC. The parameter of cutting speed, feed rate and axial depth of cut were kept constant at 3000 rpm spindle speed, 60 mm/min feed rate and 0.5 axial dept of cut. The radial depth of cut were varied from 0.01mm to 0.1 mm. The results indicated that uncoated carbide show the better performance in terms of surface roughness and surface profile, as compared to coated carbide. On the other hand, coated carbide cutting tools suffered with built-up-edge formation at the tool edge, hence caused shearing effect and deterioration at the tool-chip interface. This study is expected to provide understanding of machining metal matrix composites based materials.


2013 ◽  
Vol 589-590 ◽  
pp. 13-18 ◽  
Author(s):  
Song Zhang ◽  
Jian Feng Li ◽  
Hong Gang Lv ◽  
Wei Dong Chen

In the present research, an attempt has been made to experimentally investigate the cutting forces in hard milling of H13 steel with coated carbide tools under dry, MQL (minimum quantity lubrication) and MQCL (minimum quantity cooling lubrication) cutting conditions. Based on Taguchis method, four-factor (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) four-level orthogonal experiments were employed. It is found that the periodical fluctuation of the cutting forces caused by the variation of the undeformed chip thickness with the entry/exit of the cutting edge is an essential feature of the hard milling process. The empirical models for cutting forces are established, and ANOVA (analysis of variance) indicates that the quadratic models can well express the relationship between cutting forces and cutting parameters.


2010 ◽  
Vol 126-128 ◽  
pp. 911-916 ◽  
Author(s):  
Yuan Wei Wang ◽  
Song Zhang ◽  
Jian Feng Li ◽  
Tong Chao Ding

In this paper, Taguchi method was applied to design the cutting experiments when end milling Inconel 718 with the TiAlN-TiN coated carbide inserts. The signal-to-noise (S/N) ratio are employed to study the effects of cutting parameters (cutting speed, feed per tooth, radial depth of cut, and axial depth of cut) on surface roughness, and the optimal combination of the cutting parameters for the desired surface roughness is obtained. An exponential regression model for the surface roughness is formulated based on the experimental results. Finally, the verification tests show that surface roughness generated by the optimal cutting parameters is really the minimum value, and there is a good agreement between the predictive results and experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document