Determination of AISI 1045 Steel Constitutive Model by Cutting Experiment Inverse Analysis Methods

2013 ◽  
Vol 589-590 ◽  
pp. 52-57
Author(s):  
Xin Yi Qiu ◽  
Peng Nan Li ◽  
Shun Xing Wu ◽  
Zhi Hui Yan ◽  
Si Wen Tang

Based on the Merchant shear angle theory, two-dimensional high-speed orthogonal cutting experiments with an ‘OXCUT’ flow stress inverse procedure were used to determine the Johnson-Cook constitutive constants of the AISI 1045 steel (195HB). The constitutive constants obtained in the strain range 1.3-1.4 and large strain rate range 6106-7106/s. It is verified by experiments, and the result shows that the cutting forces are within the permissible error range. Compared the constitutive model with Hu’s, the cutting forces of this constitutive model of FEM are closer to the measurement, while the feed force has a relatively larger gap.

2013 ◽  
Vol 307 ◽  
pp. 174-177 ◽  
Author(s):  
Kuldip Singh Sangwan ◽  
Girish Kant ◽  
Aditya Deshpande ◽  
Pankaj Sharma

This paper focuses on finite element modeling of orthogonal cutting process of AISI 1045 steel using Modified Johnson Cook (MJC) as constitutive material flow model under various machining parameters. Finite element solutions of cutting forces, effective stresses and temperature are obtained for a wide range of cutting speeds and feeds. The effect of feed and cutting speed on cutting forces, effective stresses and temperature has been studied over a wide range of values. Percentage variation of each is also studied to predict co-relation with the different machining parameters.


2011 ◽  
Vol 223 ◽  
pp. 286-295 ◽  
Author(s):  
Cédric Courbon ◽  
Tarek Mabrouki ◽  
Joël Rech ◽  
Denis Mazuyer ◽  
Enrico D'Eramo

The present work proposes to enhance the thermal interface denition in Finite Element (FE) simulations of machining. A user subroutine has been developed in Abaqus/Explicit © to implement a new experimentally-based heat partition model extracted from tribological tests. A 2D Arbitrary-Lagragian-Eulerian (ALE) approach is employed to simulate dry orthogonal cutting of AISI 1045 steel with coated carbide inserts. Simulation results are compared to experimental ones over a whole range of cutting speeds and feed rates in terms of average cutting forces, chip thickness, tool chip contact length and heat flux. This study emphasizes that heat transfer and temperature distribution in the cutting tool are drastically in uenced by the thermal formulation used at the interface. Consistency of the numerical results such as heat flux transmitted to the tool, peak temperature as well as hot spot location can be denitively improved.


Author(s):  
Hongtao Ding ◽  
Yung C. Shin

Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature, and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of American Iron and Steel Institute (AISI) 1045 steel based on a true metallo-thermomechanical coupled analysis. A metallo-thermomechanical coupled material model is developed and a finite element model (FEM) is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using abaqus. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7 deg to 5 deg. A good agreement is achieved in chip formation, cutting force, and cutting temperature between the model predictions and the experimental data.


2013 ◽  
Vol 589-590 ◽  
pp. 134-139
Author(s):  
Guo He Li ◽  
Yu Jun Cai ◽  
Hou Jun Qi

A method for building the constitutive relationship based on the J-C model and hardness is presented through considering the influence of hardness on the yield strength and the tensile strength. A constitutive relationship of hardened AISI 1045 is built by this method and the adiabatic shear critical cutting conditions of three kinds of hardness AISI 1045 steel are prediction through a model building by the linear pertubation analysis which considering the influence of compression stress of the primary shear zone, the cutting conditions and the constitutive relationship. For proving the prediction results, some orthogonal cutting experiments are performed to get the critical cutting conditions of adiabatic shear. The comparison shows that the prediction results are consistent with that of experiments.


1984 ◽  
Vol 106 (3) ◽  
pp. 242-247 ◽  
Author(s):  
A. Thangaraj ◽  
P. K. Wright ◽  
M. Nissle

Using metallographic and microhardness techniques, temperature distributions have been determined in twist drills. The methods rely on the fact that certain high speed steel materials exhibit microstructural changes when subjected to temperatures greater than 600°C. Quick-stop specimens have also been obtained to study the metal flow patterns over the drill flutes. These results have been used to comment on the different wear mechanisms that affect the performance of a twist drill. Preliminary results show that bulk plastic flow occurs near the margin of the drill where the temperatures are in the vicinity of 900°C when machining AISI 1045 steel at 40 m/min.


2016 ◽  
Vol 861 ◽  
pp. 63-68 ◽  
Author(s):  
Xue Ping Zhang ◽  
Shu Biao Wu ◽  
Zhen Qiang Yao ◽  
Li Feng Xi

Hardened AISI 1045 steel implemented in machine tool spindle was previously ground using grinding operation. This research aims to address the feasibility of hard turning AISI 1045 using PCBN tool with chip breaker under dry condition. Chip morphology, cutting force and temperature were measured, analyzed and correlated with machining parameters. Experimental results demonstrate that serrated chips are generated at high speeds, high feed rate is an assistant to promote serrated chips, and chip breaker can help break chip into acceptable lengths. Cutting forces were characterized with periodic fluctuation along three directions as chips are serrated. Temperature at machined zone can reach as high as 1200°C, which indicates that adiabatic shear bands can be successfully achieved during the machining of hardened AISI 1045 steel without applying lubricants.


2018 ◽  
Vol 2 (4) ◽  
pp. 66 ◽  
Author(s):  
Luis Hernández González ◽  
Yassmin Seid Ahmed ◽  
Roberto Pérez Rodríguez ◽  
Patricia Zambrano Robledo ◽  
Martha Guerrero Mata

The manufacturing industry aims to produce many high quality products efficiently at low cost, thereby motivating companies to use advanced manufacturing technologies. The use of high-speed machining is increasingly widespread; however, it lacks a deep-rooted knowledge base needed to facilitate implementation. In this paper, response surface methodology (RSM) has been applied to determine the optimum cutting conditions leading to minimum flank wear in high-speed dry turning on AISI 1045 steel. The mathematical models in terms of machining parameters were developed for flank wear prediction using RSM on the basis of experimental results. The high speed turning experiments were carried out with two coated carbide and a cermet inserts using AISI 1045 steel as work material at different cutting speeds and machining times. The models selected for optimization were validated through the Pareto principle. Results showed the GC4215 insert to be the most optimal option, because it did not reach the cutting tool life limit and could be used for the whole range of cutting parameters selected. To quantitatively evaluate the usefulness of the cutting tools, it was proposed the coefficient of use of the tools from the results of the contour graphs. The GC4215 insert showed 100% effectiveness, followed by the GC4225 with 98.4%, and finally, the CT5015 insert with 83%.


2011 ◽  
Vol 383-390 ◽  
pp. 6741-6746
Author(s):  
Wan Masrurah Bt Hairudin ◽  
Mokhtar B. Awang

In this paper, thermo mechanical modelling of cutting process has been developed using a commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modelled using Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assumed to describe the material behaviour during the process. This study is aimed at temperature and stresses distributions during machining of AISI 1045 steel with different rake angles; α=0° and α= -10°. The results showed that the maximum stress for 0° and -10° are 963MPa and 967MPa while the maximum temperature results shown that 771°C and 347°C.


Sign in / Sign up

Export Citation Format

Share Document