Evaluation of Developed Texture during Cold-Rolling Deformation of Ti-Nb-Ta-Zr Biocompatible Alloy

2013 ◽  
Vol 592-593 ◽  
pp. 366-369
Author(s):  
Vasile Danut Cojocaru ◽  
Isabelle Thibon ◽  
Doina Raducanu ◽  
Ion Cinca ◽  
Thierry Gloriant ◽  
...  

During the last decade the titanium alloys were extensively used in a variety of applications due to their good mechanical properties, high biocompatibility and corrosion resistance. β-type Ti alloys composed of Nb, Ta and Zr elements have received much attention, because they feature high specific strength, bio-corrosion resistance, no allergic problems and biocompatibility. A Ti-29Nb-9Ta-10Zr (wt.%) alloy was subjected to thermo-mechanical processing and testing. Two states were investigated: recrystallized and 80% cold-rolled. Data concerning phase structure and developed texture, expressed by Inverse Pole Figures (IPFs) and Orientation Distribution Functions (ODFs), was obtained and analyzed.

2005 ◽  
Vol 495-497 ◽  
pp. 719-724
Author(s):  
R.E. Bolmaro ◽  
B. Molinas ◽  
E. Sentimenti ◽  
A.L. Fourty

Some ancient metallic art craft, utensils, silverware and weapons are externally undistinguishable from modern ones. Not only the general aspect and shape but also some uses have not changed through the ages. Moreover, when just some small pieces can be recovered from archaeological sites, the samples can not easily be ascribed to any known use and consequently identified. It is clear that mechanical processing has changed along history but frequently only a "microscopic" inspection can distinguish among different techniques. Some bronze samples have been collected from the Quarto d’Altino (Veneto) archaeological area in Italy (paleovenetian culture) and some model samples have been prepared by a modern artisan. The sample textures have been measured by X-ray Diffraction techniques. (111), (200) and (220) pole figures were used to calculate Orientation Distribution Functions and further recalculate pole figures and inverse pole figures. The results were compared with modern forging technology results. Textures are able to discern between hammering ancient techniques for sheet production and modern industrial rolling procedures. However, as it is demonstrated in the present work, forgery becomes difficult to detect if the goldsmith, properly warned, proceeds to erase the texture history with some hammering post-processing. The results of this contribution can offer to the archaeologists the opportunity to take into consideration the texture techniques in order to discuss the origin (culture) of the pieces and the characteristic mechanical process developed by the ancient artisan. Texture can also help the experts when discussing the originality of a certain piece keeping however in mind the cautions indicated in this publication.


2007 ◽  
Vol 546-549 ◽  
pp. 347-350 ◽  
Author(s):  
Li Li ◽  
Tie Tao Zhou ◽  
Huan Xi Li ◽  
Chang Qi Chen ◽  
Qiu Lin Wu ◽  
...  

Texture evolution in Mg-13wt%Li-X alloy cold-rolled from 1.35 mm to 0.34 mm thickness was investigated, by obtaining pole figures and orientation distribution functions (ODFs). Punching tests were conducted to reveal the effect of texture nature on formability. It was found that: (1) the textures of the as-received sheet are characterized by α fiber texture, a γ fiber texture and a cubic texture in both cold-rolled and annealed conditions; (2) with thickness reduction though rolling, the intensity of the γ fiber texture continuously increases and finally the γ fiber texture connects into {111} tube texture, the texture of <11 0> orientation flows towards {223}<11 0> along α fiber, the cubic texture of {001}<100> turns into {035}<100>, while some grains concentrate at {011}<41 1> orientation; (3) good punching behavior of the cold-rolled sheet corresponds to the appearance of a well-developed γ fiber texture.


1971 ◽  
Vol 4 (4) ◽  
pp. 303-310 ◽  
Author(s):  
H. J. Bunge ◽  
J. Tobisch ◽  
W. Sonntag

Three-dimensional orientation distribution functions of the crystallites in copper sheets, cold rolled to different degrees of reduction, have been determined using neutron diffraction pole figures. The main features of the textures may be represented by the orientation `tube' already described in prior publications. Two ranges of rolling reduction can be distinguished, a lower one (30 to 50%) and a higher one (70 to 95%) the texture changes of which correspond to those calculated after the Taylor theory. In an intermediate range (50 to 70%) a different deformation mechanism occurs which leads to an intermediate (001) [110] texture component. It is supposed that anisotropic hardening may have occurred in this range.


1993 ◽  
Vol 21 (4) ◽  
pp. 195-206 ◽  
Author(s):  
O. Engler ◽  
J. Palacios ◽  
W. Schäfer ◽  
E. Jansen ◽  
K. Lücke ◽  
...  

Texture measurements were carried out on 95% cold rolled and also on recrystallized high purity copper sheets by means of X-ray and neutron diffraction. The purpose of this study was to compare the results obtained by the two different measuring techniques and also to test the accuracy of the corrections normally used for deriving pole figures from X-ray data. In sheets containing texture inhomogeneities, X-ray pole figures were measured at different distances from the surface and two methods of producing averaged pole figures comparable to neutron measurements were applied. From the X-ray and from the neutron determined pole figures orientation distribution functions (ODF's) were calculated. The resulting differences which are less than 10% are discussed.


Author(s):  
A.A. Suslov

Because of their high specific strength and satisfactory corrosion resistance, aluminum alloys belong to the group of fundamental structural materials in modern engineering. Their wide use has been made possible as a result of developing advanced methods of processing and producing permanent joints by welding or brazing. However, the application of brazing aluminum alloys is limited because of the problems in removing the strong and chemically resistant oxide film. These problems can be overcome by using metallic coatings which themselves do not oxidize during heating in vacuum and, when deposited, the oxide film is broken up and can be removed from the surface of the parent material. The most promising method is to use metallic coatings in the form of individual components of the brazing alloy which forms in contact melting of the deposited coatings with aluminum in heating for brazing. This brazing method is referred to as contact-reactive brazing and is used widely for brazing aluminum alloys. This article provides an overview of the contact-reactive brazing process.


1986 ◽  
Vol 6 (3) ◽  
pp. 167-179 ◽  
Author(s):  
M. Dahms ◽  
H.-J. Bunge

The calculation of orientation distribution functions from incomplete pole figures can be carried out by a least squares approximation of the texture coefficients Clμν and the normalization factors Nhkl to the available experimental data. This procedure is less susceptable to instabilities due to experimental errors if the normalization factors can be calculated independently of the coefficients Clμν. In the case of cubic materials, the relationship F20 = 0 to be fulfilled by pole figure values provides an independent condition for the calculation of the normalization factor. This condition can still be improved by taking the slopes of the pole density curves at α = αmax⁡ and α = 90° into account. An economic way to consider the slope in the pole figures is to use a cubic spline interpolation.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 776
Author(s):  
Mingyan Sun ◽  
Qichao Fan ◽  
Yingying Wang ◽  
Qin Yang ◽  
Jie Chen ◽  
...  

This work aims to clarify the influence of texture type and intensity on the shape memory effect (SME) in NiTiNb shape memory alloy (SMA) pipe joints, especially revealing the causes for the anisotropy of SME via texture changes. Three NiTiNb rods with different intensities of the {111}<110> texture were fabricated, and their microstructures, crystalline orientation distribution functions and inverse pole figures were obtained by X-ray diffraction and electron backscatter diffraction measurements. Simultaneously, the SME was characterized by inner-diameter recoverability of the corresponding pipe joints. For a given intensity of the {111}<110> texture, the SME of the NiTiNb pipe joints strongly depended on the expansion direction due to {111}<110> orientation-induced anisotropy of SME. In addition, both the SME and anisotropy of NiTiNb pipe joints increased with the increased intensity of the {111}<110> texture. Therefore, a suitable expansion direction and strong texture intensity should be considered for high SME in NiTiNb pipe joints.


2011 ◽  
Vol 299-300 ◽  
pp. 127-130
Author(s):  
Yang Chen ◽  
Qi Mei Gao ◽  
Ni Tian

The rolling texture and its distribution along thickness direction in the Al alloy 6111 sheet cold rolled by synchronous Rolling and asynchronous rolling have been investigated with orientation distribution functions. The results show that the texture distribution is asymmetric on both sides of center layer of the sheet after cross shear rolling. The orientation densities of the main texture compounds on the slow roller side are higher, but are lower on the fast rolled side. The asymmetry of the texture distribution increases with improving the velocity ratio of asynchronous rolling.


1993 ◽  
Vol 22 (2) ◽  
pp. 73-85 ◽  
Author(s):  
V. N. Dnieprenko ◽  
S. V. Divinskii

New method for simulation of orientation distribution functions of textured materials has been proposed. The approach is based on the concept to describe any texture class by a superposition of anisotropic partial fibre components. The texture maximum spread is described in a “local” coordinate system connected with the texture component axis. A set of Eulerian angles γ1,γ2,γ3 are introduced with this aim. To specify crystallite orientations with respect to the sample coordinate system two additional sets of Eulerian angles are introduced besides γ1,γ2,γ3. One of them, (Ψ0,θ0,ϕ0), defines the direction of the texture axis of a component with respect to the directions of the cub. The other set, (Ψ1,θ1,ϕ1), is determined by the orientation of the texture component and its texture axis in the sample coordinate system. Analytical expressions approximating real spreads of crystallites in three-dimensional orientation space have been found and their corresponding model pole figures have been derived. The proposed approach to the texture spread description permits to simulate a broad spectrum of real textures from single crystals to isotropic polycrystals with a high enough degree of correspondence.


Texture ◽  
1972 ◽  
Vol 1 (1) ◽  
pp. 31-49 ◽  
Author(s):  
U. Schläfer ◽  
H. J. Bunge

Three-dimensional orientation distribution functions were calculated from neutron diffraction pole figures of unwound cylinders taken at different distances from the centre of cold drawn Al-wires. Their features change from the axially symmetric type at the very centre of the wire towards a texture near to the rolling type at the surface. Relations between the three-dimensional function and ordinary fibre texture pole figures were used to study the dependence of the textures on certain processing variables for cold drawn as well as recrystallized wires.


Sign in / Sign up

Export Citation Format

Share Document