Development of a Stall Barrier with Internal Flow Channel for Effective, Highly Separated Boundary Layer and Flow Control in the Rotor Blade Root Region

2013 ◽  
Vol 597 ◽  
pp. 29-35
Author(s):  
Frank Kortenstedde ◽  
Benjamin Stanke ◽  
Christian Wendler ◽  
Bernd Steckemetz

As part of a cluster project in the Aerospace research cluster at the Hochschule Bremen, the model rotor blade of a wind turbine is to be aerodynamically optimized with a more effective stall barrier. The flow element to be developed should provide very effective interruption of the radial flow on the rotor blade. A combination of this flow element and the "Splitflap" flow element allows the aerodynamic efficiency of the rotor blade to be further improved.

2018 ◽  
Vol 3 (2) ◽  
pp. 503-531
Author(s):  
Pascal Weihing ◽  
Tim Wegmann ◽  
Thorsten Lutz ◽  
Ewald Krämer ◽  
Timo Kühn ◽  
...  

Abstract. The present study investigates flow dynamics in the hub region of a wind turbine focusing on the influence of nacelle geometry on the root aerodynamics by means of Reynolds averaged Navier–Stokes simulations with the code FLOWer. The turbine considered is a generic version of the Enercon E44 converter incorporating blades with flat-back-profiled root sections. First, a comparison is drawn between an isolated rotor assumption and a setup including the baseline nacelle geometry in order to elaborate the basic flow features of the blade root. It was found that the nacelle reduces the trailed circulation of the root vortices and improves aerodynamic efficiency for the inner portion of the rotor; on the other hand, it induces a complex vortex system at the juncture to the blade that causes flow separation. The origin of these effects is analyzed in detail. In a second step, the effects of basic geometric parameters describing the nacelle have been analyzed with the purpose of increasing the aerodynamic efficiency in the root region. Therefore, three modification categories have been addressed: the first alters the nacelle diameter, the second varies the blade position relative to the nacelle and the third comprises modifications in the vicinity of the blade–nacelle junction. The impact of the geometrical modifications on the local flow physics are discussed and assessed with respect to aerodynamic performance in the blade root region. It was found that increasing the nacelle diameter deteriorates the root aerodynamics, since the flow separation becomes more pronounced. Possible solutions identified to reduce the flow separation are a shift of the blade in the direction of the rotation or the installation of a fairing fillet in the junction between the blade and the nacelle.


2018 ◽  
Author(s):  
Pascal Weihing ◽  
Tim Wegmann ◽  
Thorsten Lutz ◽  
Ewald Krämer ◽  
Timo Kühn ◽  
...  

Abstract. The present study investigates the flow dynamics in the hub region of a wind turbine focusing on the influence of the nacelle geometry on the root aerodynamics by means of Reynolds averaged Navier-Stokes simulations with the code FLOWer. The turbine considered is a generic version of the Enercon E44 converter incorporating blades with flatback-profiled root sections. First, a comparison is drawn between an isolated rotor assumption and a setup including the baseline geometry, in order to elaborate the basic flow features of the blade root. It was found that the nacelle reduces the trailed circulation of the root vortices and improves aerodynamic efficiency for the inner portion of the rotor, but on the other hand induces a complex vortex system in the junction of the blade and the nacelle that causes flow separation. The origin of these effects is analyzed in detail. In a second step, effects of basic geometric nacelle properties have been analyzed with the purpose to increase the aerodynamic efficiency in the root region. Therefore, three modification categories have been addressed, where the first alters the nacelle diameter, the second varies the blade position relative to the nacelle and the third comprises modifications in the vicinity of the blade-nacelle junction. The impact of the geometrical modifications on the local flow physics are discussed and assessed with respect to aerodynamic performance in the blade root region. It was found that increasing the nacelle diameter deteriorates the root aerodynamics, since the flow separation gets more pronounced. Possible solutions identified to reduce the flow separation are a shift of the blade in direction of the rotation or the installation of a fairing fillet in the junction between the blade and the nacelle.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3745
Author(s):  
Tristan Revaz ◽  
Fernando Porté-Agel

Large-eddy simulation (LES) with actuator models has become the state-of-the-art numerical tool to study the complex interaction between the atmospheric boundary layer (ABL) and wind turbines. In this paper, a new evaluation of actuator disk models (ADMs) for LES of wind turbine flows is presented. Several details of the implementation of such models are evaluated based on a test case studied experimentally. In contrast to other test cases used in previous similar studies, the present test case consists of a wind turbine immersed in a realistic turbulent boundary-layer flow, for which accurate data for the turbine, the flow, the thrust and the power are available. It is found that the projection of the forces generated by the turbine into the flow solver grid is crucial for rotor predictions, especially for the power, and less important for the wake flow prediction. In this context, the projection of the forces into the flow solver grid should be as accurate as possible, in order to conserve the consistency between the computed axial velocity and the projected axial force. Also, the projection of the force is found to be much more important in the rotor plane directions than in the streamwise direction. It is found that for the case of a wind turbine immersed in a realistic turbulent boundary-layer flow, the potential spurious numerical oscillations originating from sharp force projections are not harmful to the results. By comparing an advanced model which computes the non-uniform distribution of the turbine forces over the rotor with a simple model which assumes uniform effects of the turbine forces, it is found that both can lead to accurate results for the far wake flow and the thrust and power predictions. However, the comparison shows that the advanced model leads to better results for the near wake flow. In addition, it is found that the simple model overestimates the rotor velocity prediction in comparison to the advanced model. These elements are explained by the lack of local feedback between the axial velocity and the axial force in the simple model. By comparing simulations with and without including the effects of the nacelle and tower, it is found that the consideration of the nacelle and tower is relatively important both for the near wake and the power prediction, due to the shadow effects. The grid resolution is not found to be critical once a reasonable resolution is used, i.e. in the order of 10 grid points along each direction across the rotor. The comparison with the experimental data shows that an accurate prediction of the flow, thrust, and power is possible with a very reasonable computational cost. Overall, the results give important guidelines for the implementation of ADMs for LES.


2020 ◽  
Vol 53 (2) ◽  
pp. 12115-12120
Author(s):  
Zhengyang Zhang ◽  
Zaiyu Chen ◽  
Guoqiang Yu ◽  
Tianhai Zhang ◽  
Minghui Yin ◽  
...  

Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 78
Author(s):  
Kalyani Bhide ◽  
Kiran Siddappaji ◽  
Shaaban Abdallah

This work attempts to connect internal flow to the exit flow and supersonic jet mixing in rectangular nozzles with low to high aspect ratios (AR). A series of low and high aspect ratio rectangular nozzles (design Mach number = 1.5) with sharp throats are numerically investigated using steady state Reynolds-averaged Navier−Stokes (RANS) computational fluid dynamics (CFD) with k-omega shear stress transport (SST) turbulence model. The numerical shadowgraph reveals stronger shocks at low ARs which become weaker with increasing AR due to less flow turning at the throat. Stronger shocks cause more aggressive gradients in the boundary layer resulting in higher wall shear stresses at the throat for low ARs. The boundary layer becomes thick at low ARs creating more aerodynamic blockage. The boundary layer exiting the nozzle transforms into a shear layer and grows thicker in the high AR nozzle with a smaller potential core length. The variation in the boundary layer growth on the minor and major axis is explained and its growth downstream the throat has a significant role in nozzle exit flow characteristics. The loss mechanism throughout the flow is shown as the entropy generated due to viscous dissipation and accounts for supersonic jet mixing. Axis switching phenomenon is also addressed by analyzing the streamwise vorticity fields at various locations downstream from the nozzle exit.


Author(s):  
Paul Schünemann ◽  
Timo Zwisele ◽  
Frank Adam ◽  
Uwe Ritschel

Floating wind turbine systems will play an important role for a sustainable energy supply in the future. The dynamic behavior of such systems is governed by strong couplings of aerodynamic, structural mechanic and hydrodynamic effects. To examine these effects scaled tank tests are an inevitable part of the design process of floating wind turbine systems. Normally Froude scaling is used in tank tests. However, using Froude scaling also for the wind turbine rotor will lead to wrong aerodynamic loads compared to the full-scale turbine. Therefore the paper provides a detailed description of designing a modified scaled rotor blade mitigating this problem. Thereby a focus is set on preserving the tip speed ratio of the full scale turbine, keeping the thrust force behavior of the full scale rotor also in model scale and additionally maintaining the power coefficient between full scale and model scale. This is achieved by completely redesigning the original blade using a different airfoil. All steps of this redesign process are explained using the example of the generic DOWEC 6MW wind turbine. Calculations of aerodynamic coefficients are done with the software tools XFoil and AirfoilPrep and the resulting thrust and power coefficients are obtained by running several simulations with the software AeroDyn.


Sign in / Sign up

Export Citation Format

Share Document