The Influence of Electrodes Position to Alternating Current Annular Micromixer

2014 ◽  
Vol 609-610 ◽  
pp. 1343-1348
Author(s):  
He Zhang ◽  
Xiao Wei Liu ◽  
Li Tian ◽  
Xiao Wei Han

In this paper, we focused the mixed results of the micromixer with the same quantity of electrodes but different placement. We imposed time dependent electric potential on different electrodes under the low Reynolds number condition, and then evaluated the impact of electrode position to the mixed results and summarized some rules which were conducive to achieving mixed. According to the simulation results and combined with the assembly process, we obtained the optimal number and placement of microelectrodes.

2019 ◽  
Vol 69 (1) ◽  
pp. 69-84
Author(s):  
Veldurthi Naresh ◽  
D. Bodas ◽  
Chandel Sunil ◽  
Bhave Tejashree

AbstractIn the present work, two geometrically similar passive geometries with dumbbell shape were designed to perturb the dominating viscous forces in the low Reynolds number (Re) flows of the fluids. The geometries were designated as PDM-I and PDM-II, in which all the linear dimensions were related by a constant scale factor of two. Mixing efficiencies and pressure drops of the species at various Reynolds number (Re) were calculated to estimate the scaling effect validations. Finally, the geometrically similar PDM geometries were fabricated in Polydimethylsiloxane (PDMS) polymer to evaluate the scaling effect on the mixing efficiencies of the dyes and validated with the simulation results of species mixing.


Author(s):  
І.О. Ушакова

Computer modeling is a method for solving the problems of analysis or synthesis of a complex system based on the use of its computer model. Simulation, as a component of computer modeling, allows you to construct most of the possible states of the analyzed system. In this way it allows to correct the processes of assembling machines in a minimum time and with minimal costs, to foresee possible risks and to avoid unreasonable decisions regarding the organization of processes, to reduce material costs. Simulation gives the best results for modeling uncertain or probabilistic systems. Simulation, as a component of computer modeling, gives the best results for modeling systems with uncertainty or with a probabilistic nature. Mathematically calculating all possible variants of the system’s behavior is a laborious task, and using average values in the calculations gives inaccurate results. For assembly production systems, simulation modeling is used to select the optimal production organization parameters. The aim of this work is to build a computer simulation model that allows you to evaluate the impact of production factors (number of employees, operating parameters and type of assembly process) on the assembly process and substantiate the effectiveness of the model. The current assembly process of the machine was considered for modeling. The assembly process includes: two streams of verification, synchronization of request from these two streams, and a machine collection stream. The vacated line starts servicing the application that entered the system earlier than others. Such a discipline is called “earlier entered - earlier served” (FIFO - First In - First Out).s from flows, and a machine assembly flow. An optimization experiment was carried out after the construction and verification of the simulation model. The maximum value of profit was chosen as the objective function. Iterations were performed during an optimization experiment. The optimal number of employees was selected for two inspection flows and a machine assembly stream in the assembly shop. The first experimental result showed the effectiveness of the request flow synchronization method. The following optimization experiment showed the relationship between the number of workers in certain threads of the assembly process and profit. The results of using agent-based models for simulation can be used to optimize assembly processes.


Author(s):  
Alberto Di Sante ◽  
Rene´ Van den Braembussche

The impact of Coriolis forces on low Reynolds number decelerating flows is studied by means of time resolved Particle Image Velocimetry in a 6° diverging channel. Measurements are made with a high speed camera and a continuous light source rotating at the same speed as the rotating channel. This allows a direct and accurate recording of the time varying relative velocity. The Reynolds number can be varied from 3 000 to 30 000 in combination with a change of rotation number between 0.0 and 0.33. These values are characteristic for the flow in the blade passage of centrifugal impellers used in micro gasturbines. Increasing rotation stabilizes the flow on the suction side. The peak turbulence intensity shifts away from the wall with a small increase of its amplitude. The turbulence intensity on the pressure side increases its peak value and concentrates closer to the wall when increasing rotation. Instantaneous flow field analyses indicate that elongated vortical structures characterize the boundary layer in the stationary case and on the pressure side of the rotating channel. Isotropic vortices develop relatively distant from the wall on the suction side. Their position and size are tracked in time by means of a wavelet analysis.


2020 ◽  
Author(s):  
Mostafa El-Salamony ◽  
Mohamed Aziz

Abstract Although the solar panel is thin, its thickness is considerable compared to the airfoil thickness. This paper aims to evaluate the impact of adding the solar panel over an airfoil of a UAV of type AG 34, which is low camber airfoil suitable for low-Reynolds number flights. Three configurations are examined to stand on the most suitable configuration. The analysis is based on the airfoil characteristics (lift, drag, and moment) and the pressure distribution over the airfoil surface. A parametric study is conducted to study the effect of the solar panel size and position on the aerodynamic performance.


2018 ◽  
Vol 12 (3) ◽  
pp. 255
Author(s):  
Muhammad Zal Aminullah Daman Huri ◽  
Shabudin Bin Mat ◽  
Mazuriah Said ◽  
Shuhaimi Mansor ◽  
Md. Nizam Dahalan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document