Thermoforming Simulation of Multilayer Composites with Continuous Fibre and Thermoplastic Matrix

2014 ◽  
Vol 611-612 ◽  
pp. 368-374
Author(s):  
Eduardo Guzman Maldonado ◽  
Nahiene Hamila ◽  
Philippe Boisse ◽  
Philippe Chaudet

CFRTP prepreg laminates thermoforming (Continuous Fibre Reinforcements and Thermoplastic Resin) is a fast composite manufacturing process. Furthermore the thermoplastic matrix is favourable to recycling. The development of a thermoforming process is complex and expensive to achieve by trial/error. A simulation approach for thermoforming of multilayer thermoplastic is presented. Each prepreg layer is modelled by semi-discrete shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures around the fusion point. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers. A lubricated friction model is implemented between the layers and for ply/tool friction. Thermal and forming simulations are presented and compared to experimental results. The computed shear angles after forming and wrinkles are in good agreement with the thermoforming experiment.

2015 ◽  
Vol 651-653 ◽  
pp. 387-392 ◽  
Author(s):  
Eduardo Guzmán Maldonado ◽  
Nahiène Hamila ◽  
Philippe Boisse ◽  
Peng Wang ◽  
Philippe Chaudet

CFRTP prepreg laminates thermoforming (Continuous Fibre Reinforcements and Thermoplastic Resin) is a fast composite manufacturing process. Furthermore the thermoplastic matrix is favourable to recycling. The development of a thermoforming process is complex and expensive to achieve by trial/error. A simulation approach for thermoforming prepregs thermoplastic is presented. This model is based on a continuous approach. A hyperelastic behaviour is associated with dry reinforcements. The hyperelastic potential is built from the contribution of three principal deformation modes that are supposed to be independent. A nonlinear viscoelastic model based on the generalization of simple rheological models is associated with the in-plane shear mode. The finite element simulation of a thermoforming example using this model is presented.


2021 ◽  
Vol 8 ◽  
Author(s):  
Théo A. Ghafour ◽  
Julien Colmars ◽  
Philippe Boisse

Most of the numerical simulations of dry textile reinforcements forming are based on a macroscopic approach and continuous material models whose behavior is assumed to be elastic (linear or nonlinear). On the one hand, the experience shows that under loading/unloading stresses, residual inelastic deformations are observed. On the other hand, among the deformations that a woven reinforcement undergoes during forming, in most cases, only bending is subject to loading/unloading stresses. The first objective of this work is to highlight the inelastic bending behavior of textile reinforcements during a forming process and to find the possible origins of inelasticity. The second objective is to find the cases generating bending loading/unloading during forming as well as to study the influence of the bending inelasticity on forming simulation. For this purpose, the inelastic bending behavior was characterized by three-point bending tests. Then, the Dahl friction model was adapted to bending to describe the inelastic behavior. Finally, this model was implemented in a finite element code based on shell elements allowing the study of the influence of taking into account the inelastic behavior in bending on the numerical simulation of forming.


2015 ◽  
Vol 651-653 ◽  
pp. 369-374
Author(s):  
Philippe Boisse ◽  
Peng Wang ◽  
Nahiene Hamila ◽  
Kevin Lemeur ◽  
Anton Rusanov ◽  
...  

The results of in-plane shear tests performed on 5-hardness satin woven carbon/PPS thermoplastic prepregs are described. The experimental analyses are based on bias-extension tests performed in an environmental chamber. The results are given for different temperatures on both side of the melting point. This range of temperature is those of the part during a thermoforming process. In another hand it is shown that second-gradient energy terms allow for an effective prediction of the onset of internal shear boundary layers which are transition zones between two different shear deformation modes. The existence of these boundary layers cannot be described by a simple first-gradient model.


2000 ◽  
Vol 123 (4) ◽  
pp. 398-402 ◽  
Author(s):  
Sing C. Tang ◽  
Z. Cedric Xia ◽  
Feng Ren

It is well known in the literature that the isotropic hardening rule in plasticity is not realistic for handling plastic deformation in a simulation of a full sheet-metal forming process including springback. An anisotropic hardening rule proposed by Mroz is more realistic. For an accurate computation of the stress increment for a given strain increment by using Mroz’s rule, the conventional subinterval integration takes excessive computing time. This paper proposes the radial return method to compute such stress increment for saving computing time. Two numerical examples show the efficiency of the proposed method. Even for a sheet model with more than 10,000 thin shell elements, the radial return method takes only 40 percent of the overall computing time by the subinterval integration.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Leiming Ning ◽  
Jichang Chen ◽  
Mingbo Tong

A high-fidelity cargo airdrop simulation requires the accurate modeling of the contact dynamics between an aircraft and its cargo. This paper presents a general and efficient contact-friction model for the simulation of aircraft-cargo coupling dynamics during an airdrop extraction phase. The proposed approach has the same essence as the finite element node-to-segment contact formulation, which leads to a flexible, straightforward, and efficient code implementation. The formulation is developed under an arbitrary moving frame with both aircraft and cargo treated as general six degrees-of-freedom rigid bodies, thus eliminating the restrictions of lateral symmetric assumptions in most existing methods. Moreover, the aircraft-cargo coupling algorithm is discussed in detail, and some practical implementation details are presented. The accuracy and capability of the present method are demonstrated through four numerical examples with increasing complexity and fidelity.


2014 ◽  
Vol 997 ◽  
pp. 321-324
Author(s):  
Wei Zheng ◽  
Guang Chun Wang ◽  
Bing Tao Tang ◽  
Xiao Juan Lin ◽  
Yan Zhi Sun

After modifying the Wahime/Bay friction model, a new friction model suitable for micro-forming process without lubrication is established. In this model, it is shows that the friction coefficient is a function of strain hardening exponent, the normal pressure and the initial yield stress of material. Based on the experimental data, the micro-upsetting process is simulated using the proposed friction model. The simulation results are used to investigate the size effect on the dry friction behavior. It is found that the Coulomb’s friction coefficient is dropping with miniaturization of specimens when the amount of reduction is not too large.


2019 ◽  
Vol 20 (4) ◽  
pp. 407
Author(s):  
Ahmad Rashed Labanieh ◽  
Christian Garnier ◽  
Pierre Ouagne ◽  
Olivier Dalverny ◽  
Damien Soulat

The first step in the composite manufacturing process consists of forming a flat textile reinforcing structure into a 3D shape. The quality of the final composite part is affected by the presence of defects induced during the forming process. Loss of cohesion in the woven fibre network (intra-ply yarn sliding) is a frequent defect in the forming process. It is expected when the cohesion between the yarns is weak or when the blank holder pressure is high. However, the mechanism of formation of this defect is not fully understood. In the present study, forming experiments with friction-based holder have been conducted for a monolayer twill woven carbon fabric in two orientations and for two plies of this fabric with different relative orientations. The occurrence of the intra-ply yarns sliding has been observed as a function of the blank holder pressure. A correlation between the occurrence of this defect and the fabric orientation has been noticed. Furthermore, the effect of the fabric orientation, number of plies, relative plies orientation and blank holder pressure on the recorded forming force and on the fabric in-plane shear is also reported and analysed.


Author(s):  
Shahriar G. Ahmadi ◽  
Tamer M. Wasfy ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

A high-fidelity multibody dynamics model for simulating a backhoe digging operation is presented. The backhoe components including: frame, manipulator, track, wheels and sprockets are modeled as rigid bodies. The soil is modeled using cubic shaped particles for simulating sand with appropriate inter-particle normal and frictional forces. A penalty technique is used to impose both joint and normal contact constraints (including track-wheels, track-terrain, bucket-particles and particles-particles contact). An asperity-based friction model is used to model joint and contact friction. A Cartesian Eulerian grid contact search algorithm is used to allow fast contact detection between particles. A recursive bounding box contact search algorithm is used to allow fast contact detection between polygonal contact surfaces. The governing equations of motion are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The model can help improve the performance of construction equipment by predicting the actuator and joint forces and the vehicle stability during digging for various vehicle design alternatives.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Rupesh Roshan ◽  
Martin Priest ◽  
Anne Neville ◽  
Ardian Morina ◽  
Xin Xia ◽  
...  

Theoretical studies have shown that in severe operating conditions, valve train friction losses are significant and have an adverse effect on fuel efficiency. However, recent studies have shown that existing valve train friction models do not reliably predict friction in boundary and mixed lubrication conditions and are not sensitive to lubricant chemistry. In these conditions, the friction losses depend on the tribological performance of tribofilms formed as a result of surface–lubricant additive interactions. In this study, key tribological parameters were extracted from a direct acting tappet type Ford Zetec SE (Sigma) valve train, and controlled experiments were performed in a block-on-ring tribometer under conditions representative of boundary lubrication in a cam and follower contact. Friction was recorded for the tribofilms formed by molybdenum dithiocarbamate (MoDTC), zinc dialkyldithiophosphate (ZDDP), detergent (calcium sulfonate), and dispersant (polyisobutylene succinimide) additives in an ester-containing synthetic polyalphaolefin (PAO) base oil on AISI E52100 steel components. A multiple linear regression technique was used to obtain a friction model in boundary lubrication from the friction data taken from the block-on-ring tribometer tests. The model was developed empirically as a function of the ZDDP, MoDTC, detergent, and dispersant concentration in the oil and the temperature and sliding speed. The resulting friction model is sensitive to lubricant chemistry in boundary lubrication. The tribofilm friction model showed sensitivity to the ZDDP–MoDTC, MoDTC–dispersant, MoDTC–speed, ZDDP–temperature, detergent–temperature, and detergent–speed interactions. Friction decreases with an increase in the temperature for all ZDDP/MoDTC ratios, and oils containing detergent and dispersant showed high friction due to antagonistic interactions between MoDTC–detergent and MoDTC–dispersant additive combinations.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 884 ◽  
Author(s):  
Seyed Vahid Sajadifar ◽  
Emad Scharifi ◽  
Ursula Weidig ◽  
Kurt Steinhoff ◽  
Thomas Niendorf

This study focuses on the high temperature characteristics of thermo-mechanically processed AA7075 alloy. An integrated die forming process that combines solution heat treatment and hot forming at different temperatures was employed to process the AA7075 alloy. Low die temperature resulted in the fabrication of parts with higher strength, similar to that of T6 condition, while forming this alloy in the hot die led to the fabrication of more ductile parts. Isothermal uniaxial tensile tests in the temperature range of 200–400 °C and at strain rates ranging from 0.001–0.1 s−1 were performed on the as-received material, and on both the solution heat-treated and the thermo-mechanically processed parts to explore the impacts of deformation parameters on the mechanical behavior at elevated temperatures. Flow stress levels of AA7075 alloy in all processing states were shown to be strongly temperature- and strain-rate dependent. Results imply that thermo-mechanical parameters are very influential on the mechanical properties of the AA7075 alloy formed at elevated temperatures. Microstructural studies were conducted by utilizing optical microscopy and a scanning electron microscope to reveal the dominant softening mechanism and the level of grain growth at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document