Accumulative Drifting Model of Inertial Navigation Platform under Elliptic Vibration

2014 ◽  
Vol 613 ◽  
pp. 269-278
Author(s):  
Zhen Xian Fu ◽  
Yu Rong Lin ◽  
Yang Liu ◽  
Xing Lin Chen

To facilitate the calibration of a precision inertial navigation platform, the drifting of the platform under vibratory testing environment is analyzed, and a simplified drift model is developed which features the accumulative rather than instantaneous impact of the vibration on the platform drifting. When applied to error parameter calibration for the platform, the proposed model entails much less computing load in drifting prediction, and removes the requirement of strict real-time synchronization between the vibration generating device and the drift-predicting programs. The form of vibration can be assumed to be elliptic, a relatively general one which allows the shaker to vibrate sinuoidally in two directions perpendicular to each other and with phase difference of 90 degree. Under certain circumstances, the elliptic vibration can be simplified to a linear or circular one, as is typical in practice. Simulations of the platform drifting error under linear, circular and general elliptic vibration shows that the accumulative model can well serve as an alternative to the conventional one in such test environments, and the merits of the proposed model become more prominent when the frequency of vibration gets higher.

2020 ◽  
Vol 7 (1) ◽  
pp. 191074 ◽  
Author(s):  
Le-Minh Kieu ◽  
Nicolas Malleson ◽  
Alison Heppenstall

Agent-based models (ABMs) are gaining traction as one of the most powerful modelling tools within the social sciences. They are particularly suited to simulating complex systems. Despite many methodological advances within ABM, one of the major drawbacks is their inability to incorporate real-time data to make accurate short-term predictions. This paper presents an approach that allows ABMs to be dynamically optimized. Through a combination of parameter calibration and data assimilation (DA), the accuracy of model-based predictions using ABM in real time is increased. We use the exemplar of a bus route system to explore these methods. The bus route ABMs developed in this research are examples of ABMs that can be dynamically optimized by a combination of parameter calibration and DA. The proposed model and framework is a novel and transferable approach that can be used in any passenger information system, or in an intelligent transport systems to provide forecasts of bus locations and arrival times.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1633 ◽  
Author(s):  
Beom-Su Kim ◽  
Sangdae Kim ◽  
Kyong Hoon Kim ◽  
Tae-Eung Sung ◽  
Babar Shah ◽  
...  

Many applications are able to obtain enriched information by employing a wireless multimedia sensor network (WMSN) in industrial environments, which consists of nodes that are capable of processing multimedia data. However, as many aspects of WMSNs still need to be refined, this remains a potential research area. An efficient application needs the ability to capture and store the latest information about an object or event, which requires real-time multimedia data to be delivered to the sink timely. Motivated to achieve this goal, we developed a new adaptive QoS routing protocol based on the (m,k)-firm model. The proposed model processes captured information by employing a multimedia stream in the (m,k)-firm format. In addition, the model includes a new adaptive real-time protocol and traffic handling scheme to transmit event information by selecting the next hop according to the flow status as well as the requirement of the (m,k)-firm model. Different from the previous approach, two level adjustment in routing protocol and traffic management are able to increase the number of successful packets within the deadline as well as path setup schemes along the previous route is able to reduce the packet loss until a new path is established. Our simulation results demonstrate that the proposed schemes are able to improve the stream dynamic success ratio and network lifetime compared to previous work by meeting the requirement of the (m,k)-firm model regardless of the amount of traffic.


1990 ◽  
Vol 39 (9) ◽  
pp. 1175-1185 ◽  
Author(s):  
L. Sha ◽  
R. Rajkumar ◽  
J.P. Lehoczky

2014 ◽  
Vol 521 ◽  
pp. 252-255
Author(s):  
Jian Yuan Xu ◽  
Jia Jue Li ◽  
Jie Jun Zhang ◽  
Yu Zhu

The problem of intermittent generation peaking is highly concerned by the grid operator. To build control model for solving unbalance of peaking is great necessary. In this paper, we propose reserve classification control model which contain constant reserve control model with real-time reserve control model to guide the peaking balance of the grid with intermittent generation. The proposed model associate time-period constant reserve control model with real-time reserve control model to calculate, and use the peaking margin as intermediate variable. Therefore, the model solutions which are the capacity of reserve classification are obtained. The grid operators use the solution to achieve the peaking balance control. The proposed model was examined by real grid operation case, and the results of the case demonstrate the validity of the proposed model.


2021 ◽  
Author(s):  
Chris Onof ◽  
Yuting Chen ◽  
Li-Pen Wang ◽  
Amy Jones ◽  
Susana Ochoa Rodriguez

<p>In this work a two-stage (rainfall nowcasting + flood prediction) analogue model for real-time urban flood forecasting is presented. The proposed approach accounts for the complexities of urban rainfall nowcasting while avoiding the expensive computational requirements of real-time urban flood forecasting.</p><p>The model has two consecutive stages:</p><ul><li><strong>(1) Rainfall nowcasting: </strong>0-6h lead time ensemble rainfall nowcasting is achieved by means of an analogue method, based on the assumption that similar climate condition will define similar patterns of temporal evolution of the rainfall. The framework uses the NORA analogue-based forecasting tool (Panziera et al., 2011), consisting of two layers. In the <strong>first layer, </strong>the 120 historical atmospheric (forcing) conditions most similar to the current atmospheric conditions are extracted, with the historical database consisting of ERA5 reanalysis data from the ECMWF and the current conditions derived from the US Global Forecasting System (GFS). In the <strong>second layer</strong>, twelve historical radar images most similar to the current one are extracted from amongst the historical radar images linked to the aforementioned 120 forcing analogues. Lastly, for each of the twelve analogues, the rainfall fields (at resolution of 1km/5min) observed after the present time are taken as one ensemble member. Note that principal component analysis (PCA) and uncorrelated multilinear PCA methods were tested for image feature extraction prior to applying the nearest neighbour technique for analogue selection.</li> <li><strong>(2) Flood prediction: </strong>we predict flood extent using the high-resolution rainfall forecast from Stage 1, along with a database of pre-run flood maps at 1x1 km<sup>2</sup> solution from 157 catalogued historical flood events. A deterministic flood prediction is obtained by using the averaged response from the twelve flood maps associated to the twelve ensemble rainfall nowcasts, where for each gridded area the median value is adopted (assuming flood maps are equiprobabilistic). A probabilistic flood prediction is obtained by generating a quantile-based flood map. Note that the flood maps were generated through rolling ball-based mapping of the flood volumes predicted at each node of the InfoWorks ICM sewer model of the pilot area.</li> </ul><p>The Minworth catchment in the UK (~400 km<sup>2</sup>) was used to demonstrate the proposed model. Cross‑assessment was undertaken for each of 157 flooding events by leaving one event out from training in each iteration and using it for evaluation. With a focus on the spatial replication of flood/non-flood patterns, the predicted flood maps were converted to binary (flood/non-flood) maps. Quantitative assessment was undertaken by means of a contingency table. An average accuracy rate (i.e. proportion of correct predictions, out of all test events) of 71.4% was achieved, with individual accuracy rates ranging from 57.1% to 78.6%). Further testing is needed to confirm initial findings and flood mapping refinement will be pursued.</p><p>The proposed model is fast, easy and relatively inexpensive to operate, making it suitable for direct use by local authorities who often lack the expertise on and/or capabilities for flood modelling and forecasting.</p><p><strong>References: </strong>Panziera et al. 2011. NORA–Nowcasting of Orographic Rainfall by means of Analogues. Quarterly Journal of the Royal Meteorological Society. 137, 2106-2123.</p>


2018 ◽  
Vol 15 (5) ◽  
pp. 593-625 ◽  
Author(s):  
Chi-Hé Elder ◽  
Michael Haugh

Abstract Dominant accounts of “speaker meaning” in post-Gricean contextualist pragmatics tend to focus on single utterances, making the theoretical assumption that the object of pragmatic analysis is restricted to cases where speakers and hearers agree on utterance meanings, leaving instances of misunderstandings out of their scope. However, we know that divergences in understandings between interlocutors do often arise, and that when they do, speakers can engage in a local process of meaning negotiation. In this paper, we take insights from interactional pragmatics to offer an empirically informed view on speaker meaning that incorporates both speakers’ and hearers’ perspectives, alongside a formalization of how to model speaker meanings in such a way that we can account for both understandings – the canonical cases – and misunderstandings, but critically, also the process of interactionally negotiating meanings between interlocutors. We highlight that utterance-level theories of meaning provide only a partial representation of speaker meaning as it is understood in interaction, and show that inferences about a given utterance at any given time are formally connected to prior and future inferences of participants. Our proposed model thus provides a more fine-grained account of how speakers converge on speaker meanings in real time, showing how such meanings are often subject to a joint endeavor of complex inferential work.


Transport ◽  
2020 ◽  
Vol 35 (5) ◽  
pp. 462-473
Author(s):  
Helena Brožová ◽  
Miroslav Růžička

Intelligent Parking Systems (IPS) allow customers to select a car park according to their preferences, rapidly park their vehicle without searching for the available parking space (place) or even book their place in advance avoiding queues. IPS provides the possibility to reduce the wastage of fuel (energy) while finding a parking place and consequently reduce harmful emissions. Some systems interact with in-vehicle navigation systems and provide users with information in real-time such as free places available at a given parking lot (car park), the location and parking fees. Few of these systems, however, provide information on the forecasted utilisation at specific time. This paper describes results of a traffic survey carried out at the parking lot of supermarket and the proposal of the model predicting real-time parking space availability based on these surveyed data. The proposed model is formulated as the non-homogenous Markov chains that are used as a tool for the forecasting of parking space availability. The transition matrices are calculated for different time periods, which allow for and include different drivers’ behaviour and expectations. The proposed forecasting model is adequate for potential use by IPS with the support of different communication means such as the internet, navigation systems (GPS, Galileo etc.) and personal communication services (mobile-phones).


2014 ◽  
Vol 701-702 ◽  
pp. 943-946
Author(s):  
Nian Fang Hong

In the wireless network environment, a large number of applications based on cell phone have emerged. But it has appeared some problems such as large amount of data and limited bandwidth and higher quality transmission in the mobile streaming media data transmission. To solve these problems, this paper designs a bandwidth adaptive streaming media real-time synchronization algorithm. Algorithm firstly analysis the state of the network, and then through real-time increase or decrease the factor method to effectively adjust the code flow rate, thus improve the QoS of streaming in transmission; to meet the learners' online learning, for subsequent teaching and interaction provides a good technical support.


Sign in / Sign up

Export Citation Format

Share Document