A Strategy for Geometric Error Characterization in Multi-Axis Machine Tool by Use of a Laser Tracker

2014 ◽  
Vol 615 ◽  
pp. 22-31 ◽  
Author(s):  
Sergio Aguado ◽  
Jorge Santolaria ◽  
David Samper ◽  
Juan Jose Aguilar Martín

This paper aims to present different methods of volumetric verification in long range machine toll with lineal and rotary axes using a commercial laser tracker as measurement system. This method allows characterizing machine tool geometric errors depending on the kinematic of the machine and the work space available during the measurement time. The kinematic of the machine toll is affected by their geometric errors, which are different depending on the number and type of movement axes. The relationship between the various geometrical errors is different from relationship obtained in machine tool whit only lineal axes. Therefore, the identification strategy should be different. In the same way, the kinematic chain of the machine tool determines determines the position of the laser tracker and available space for data capture. This paper presents the kinematic model of several machine tools with different kinematic chains use to improve the machine tool accuracy of each one by volumetric verification. Likewise, the paper thus presents a study of: the adequacy of different nonlinear optimization strategies depending on the type of axis and the usable space available.

Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 27
Author(s):  
Chana Raksiri ◽  
Krittiya Pa-im ◽  
Supasit Rodkwan

This paper presents an analysis of the geometric errors of joint assembly that affect the end-effector for a six-axis industrial robot. The errors were composed of 30 parameters that come from the Geometric Dimensioning and Tolerancing (GD&T) design, which is not the normal way to describe them. Three types of manufacturing tolerancing—perpendicularity, parallelism and position—were introduced and investigated. These errors were measured by the laser tracker. The measurement data were calculated with an analysis of the circle fitting method. The kinematic model and error model based on a combination of translations methods were used. The experiment was carried out in order to calculate the tolerancing of geometric error. Then, the positions of the end-effector in the actual measurement from laser tracker and exact performance were compared. The discrepancy was compensated by offline programming. As a result, the position errors were reduced by 90%.


Author(s):  
Y A Mir ◽  
J R R Mayer ◽  
C Fortin

Predicting the actual tool path of a machine tool prior to machining a part provides useful data in order to ensure or improve the dimensional accuracy of the part. The actual tool path can be estimated by accounting for the effect of the machine tool geometric error parameters. In computer aided design/computer aided manufacture (CAD/CAM) systems, the nominal tool path [or CL (cutter location) data] is directly generated from the curves and surfaces to be machined and the errors of the machine tool are not considered. In order to take these errors into consideration, they must first be identified and then used in the machine tool forward kinematic model. In this paper a method is presented to identify the geometric errors of machine tools and predict their effect on the tool-tip position. Both the link errors (position-independent geometric error parameters) and the motion errors (position-dependent geometric error parameters) are considered. The nominal and predicted tool paths are compared and an assessment is made of the resulting surfaces with respect to the desired part profile tolerance. A methodology is also suggested to integrate this tool within a CAD/CAPP (computer aided process planning)/CAM environment.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2847 ◽  
Author(s):  
Aguado ◽  
Pérez ◽  
Albajez ◽  
Santolaria ◽  
Velázquez

Volumetric verification is based on the machine tool (MT) kinematic model, along with its geometric errors. Although users often ignore the uncertainty of verification, the use of the MT as a traceable measurement system in the manufacturing process has increased the need for professionals to be aware of it. This paper presents an improvement in the MT kinematic model, introducing in it the influence of verification uncertainty sources. These sources have been classified into four groups: the MT, the measurement system itself, the measurement strategy, and the optimization strategy. As the developed model exhibits non-linear behavior, the Monte Carlo method was used to determine the influence of the measurement system on verification uncertainty using synthetic tests. In this manner, an improved estimation of the MT uncertainty can be obtained. Therefore, if the MT is used as a traceable measurement system, its accuracy should not be higher than the laser tracker (LT) verification influence. It hence shows the importance of LT influence.


2014 ◽  
Vol 941-944 ◽  
pp. 2219-2223 ◽  
Author(s):  
Guo Juan Zhao ◽  
Lei Zhang ◽  
Shi Jun Ji ◽  
Xin Wang

In this paper, a new method is presented for the identification of machine tool component errors. Firstly, the Non-Uniform Rational B-spline (NURBS) is established to represent the geometric component errors. The individual geometric errors of the motion parts are measured by laser interferometer. Then, the volumetric error for a machine tool with three motion parts is modeled based on the screw theory. Finally, the simulations and experiments are conducted to confirm the validity of the proposed method.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


Author(s):  
Jennifer Creamer ◽  
Patrick M. Sammons ◽  
Douglas A. Bristow ◽  
Robert G. Landers ◽  
Philip L. Freeman ◽  
...  

This paper presents a geometric error compensation method for large five-axis machine tools. Compared to smaller machine tools, the longer axis travels and bigger structures of a large machine tool make them more susceptible to complicated, position-dependent geometric errors. The compensation method presented in this paper uses tool tip measurements recorded throughout the axis space to construct an explicit model of a machine tool's geometric errors from which a corresponding set of compensation tables are constructed. The measurements are taken using a laser tracker, permitting rapid error data gathering at most locations in the axis space. Two position-dependent geometric error models are considered in this paper. The first model utilizes a six degree-of-freedom kinematic error description at each axis. The second model is motivated by the structure of table compensation solutions and describes geometric errors as small perturbations to the axis commands. The parameters of both models are identified from the measurement data using a maximum likelihood estimator. Compensation tables are generated by projecting the error model onto the compensation space created by the compensation tables available in the machine tool controller. The first model provides a more intuitive accounting of simple geometric errors than the second; however, it also increases the complexity of projecting the errors onto compensation tables. Experimental results on a commercial five-axis machine tool are presented and analyzed. Despite significant differences in the machine tool error descriptions, both methods produce similar results, within the repeatability of the machine tool. Reasons for this result are discussed. Analysis of the models and compensation tables reveals significant complicated, and unexpected kinematic behavior in the experimental machine tool. A particular strength of the proposed methodology is the simultaneous generation of a complete set of compensation tables that accurately captures complicated kinematic errors independent of whether they arise from expected and unexpected sources.


2019 ◽  
Vol 36 (4) ◽  
pp. 1364-1383 ◽  
Author(s):  
Wilma Polini ◽  
Andrea Corrado

Purpose The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool volumetric error. A kinematic model is presented that puts into relationship the locator error, the workpiece form deviations and the machine tool volumetric error. Design/methodology/approach The paper presents a general and systematic approach for geometric error modelling in drilling because of the geometric errors of locators positioning, of workpiece datum surface and of machine tool. The model can be implemented in four steps: (1) calculation of the deviation in the workpiece reference frame because of deviations of locator positions; (2) evaluation of the deviation in the workpiece reference frame owing to form deviations in the datum surfaces of the workpiece; (3) formulation of the volumetric error of the machine tool; and (4) combination of those three models. Findings The advantage of this approach lies in that it enables the source errors affecting the drilling accuracy to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for accuracy improvement through suitable measures, i.e. component tolerancing in design, machining and so on. Two typical drilling operations are taken as examples to illustrate the generality and effectiveness of this approach. Research limitations/implications Some source errors, such as the dynamic behaviour of the machine tool, are not taken into consideration, which will be modelled in practical applications. Practical implications The proposed kinematic model may be set by means of experimental tests, concerning the industrial specific application, to identify the values of the model parameters, such as standard deviation of the machine tool axes positioning and rotational errors. Then, it may be easily used to foresee the location deviation of a single or a pattern of holes. Originality/value The approaches present in the literature aim to model only one or at most two sources of machining error, such as fixturing, machine tool or workpiece datum. This paper goes beyond the state of the art because it considers the locator errors together with the form deviation on the datum surface into contact with the locators and, then, the volumetric error of the machine tool.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3739-3744 ◽  
Author(s):  
SUNG-HWAN KWEON ◽  
YU LIU ◽  
JAE-HA LEE ◽  
YOUNG-SUK KIM ◽  
SEUNG-HAN YANG

Recently, miniaturized machine tools (mMT) have become a promising micro/meso-mechanical manufacturing technique to overcome the material limitation and produce complex 3D meso-scale components with higher accuracy. To achieve sub-micron accuracy, geometric errors of a miniaturized machine tool should be identified and compensated. An optic multi-degree-of-freedom (DOF) measuring system, composed of one laser diode, two beam splitters and three position sensing detectors (PSDs), is proposed for simultaneous measurement of horizontal straightness, vertical straightness, pitch, yaw and roll errors along a moving axis of mMT. Homogeneous transformation matrix (HTM) is used to derive the relationship between the readings of PSDs and geometric errors, and an error estimation algorithm is presented to calculate the geometric errors. Simulation is carried out to prove the estimation accuracy of this algorithm. In theory, the measurement resolution of this proposed system can reach up to 0.03 μm and 0.06 arcsec for translational and rotational errors, respectively.


Author(s):  
Zihan Li ◽  
Wenlong Feng ◽  
Jianguo Yang ◽  
Yiqiao Huang

This article intends to provide an efficient modeling and compensation method for the synthetic geometric errors of large machine tools. Analytical and experimental examinations were carried out on a large gantry-type machine tool to study the spatial geometric error distribution within the machine workspace. The result shows that the position accuracy of the tool-tip is affected by all the translational axes synchronously, and the position error curve shape is non-linear and irregular. Moreover, the angular error combined with Abbe’s offset during the motion of a translational axis would cause Abbe’s error and generate significant influence on the spatial positioning accuracy. In order to identify the combined effect of the individual error component on the tool-tip position accuracy, a synthetic geometric error model is established for the gantry-type machine tool. Also, an automatic modeling algorithm is proposed to approximate the geometric error parameters based on moving least squares in combination with Chebyshev polynomials, and it could approximate the irregular geometric error curves with high-order continuity and consistency with a low-order basis function. Then, to implement real-time error compensation on large machine tools, an intelligent compensation system is developed based on the fast Ethernet data interaction technique and external machine origin shift, and experiment validations on the gantry-type machine tool showed that the position accuracy could be improved by 90% and the machining precision could be improved by 85% after error compensation.


Author(s):  
Yongjian Yu ◽  
Guoding Chen ◽  
Jishun Li ◽  
Yujun Xue

As the rotation of roller bearings is carried out under geometrical constraint of the inner ring, outer ring and multiple rollers, the motion error of the bearing should also be resulted from geometric errors of bearing parts. Therefore, it is crucial to establish the relationship between geometric errors of bearing components and motion error of assembled bearing, which contributes to improve rotational accuracy of assembled bearing in the design and machining of the bearing. For this purpose, considering roundness error and dimension error of the inner raceway, the outer raceway and rollers, a prediction method for rotational accuracy of cylindrical roller bearings is proposed, and the correctness of the proposed prediction method is verified by experimental results. The influences of roller's geometric error distribution, roller's roundness error and the number of rollers on the runout value of inner ring are investigated. The results show that, the roller arrangement with different geometric errors has a significant impact on rotational accuracy of cylindrical roller bearings. The rotational accuracy could be improved remarkably when multiple rollers with different dimension error are distributed alternately according to the size error. Even-order roundness error of rollers has a significant effect on the rotational accuracy, and the decrease level depends on the orders of roundness errors of bearing parts and the number of rollers. But odd-order roundness error of rollers has almost no effect on the rotational accuracy. The rotational accuracy of assembled bearing would be significantly improved or decreased when even order harmonic of rollers and the number of rollers satisfy specific relationships. The greater the order of roundness error of the rollers, the more severe the influence of the roller number on rotational accuracy of assembled bearing. The rotational accuracy can not be always improved with the increase of the number of rollers.


Sign in / Sign up

Export Citation Format

Share Document